
IID-A1736 835 A SPOKEN ENGLISH RECOGNITION EXPERT SYSTEM) AIR FORCE 1/3

INST OF TECH WRIGHT-PATTERSON AFB OH SCHOOL OF
UNCLASSI ENGINEERING R L ROUTH SEP 83 RFIT/GCS/EE/83S-Oi

NLSIID F/ 92NL

,. -~ ~ ~ ~ 1. t . L IM-o" L .5 .• • . . . °

W. °!I
I

MICROCOPY RESOLUTION4 TEST CHART

NATIONAL BUREAU OF STANC)ARr$.1963 A

A.,'

.,,if ~~_____ :-32

L ~ -

IplI.L:= -°

-". v*

7--7 7~ 57-:--

AIR -UNVERITY

UNITED STATES.A.IR FORCE

A SPOK EN EN Gl1I1S 1 R EC OG N T10

EXPERT SYSTEM

b y
Richard LeRoy Routh, B.S. M.A.M.
Ca pt a in, Signal Corps, U.S Army

Gra.duate Computer Sy.tst
Septemlber 1983

* A' . ~ DTIO
FL~ CE'-I IC

primsmjBU.IN srATENIEN'r
Apivdfor public re10Q84 1 2 13 240
DistbuoUm Ualimite

-v..
. *.:

a .'

,. '

.% °°N

A SPOKEN ENGLISH RECOGNITION

EXPERT SYSTEM

by
Richard LeRoy Routh, B.S., M.A.M.

SCaptain, Signal Corps, U.S. Army

A %Graduate Computer Systems

September 1983

DTIC
ELECTE
JAN 12 1984

B

--

D MUDf, ort STATEM E A

Approved jot lpu'Ac elos,

Distrbutiofl Unlimited

k.:"% . . . o,. ,. ,,-,, , ,*.3. *.), *, , , ... ,: - V r e, - ! ' - . .V 7. . .

4,

-- .AFIT/GCS/EE/83S-O1

. A SPOKEN ENGLISH RECOGNITION
EXPERT SYSTEM

THESIS

'Sl Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air University
oo.4 e Jin Partial Fulfillment of the

-: Requirements for the Degree of

Master of Science

by
Richard LeRoy Routh, B.S., M.A.M.
Captain, Signal Corps, U.S. Army

Graduate Computer Systems

September 1983

Approved for public release; distribution unlimited

®Copyright 1983, Richard LeRoy Routh
All commercial rights reserved

Preface

The advent of a computer which can intelligently

communicate with a human being in his native language will

so revolutionize human society that a 50 bit per second

machine cannot at this time begin to grasp the breadth and

depth of the change it willL bring.

There are few, if any, research efforts that can offer

the exhilaration and challenge of exploring how the human

brain processes speech. Of the means of communicating in

the animal kingdom, only speech is unique to humankind.

Perhaps that is an evidence of its power and complexity.

There are few people who have been as privileged as I

to study under the brilliance and enthusiasm of Dr. Matthew

Kabrisky. There are even fewer who have had the very unique

opportunity to take full advantage of the very important

and timely work of Dr. Robert W. Milne. For these

opportunities, I am truly grateful.

I am very thankful to my wife, Edie, who provided

support in every way possible. Without her contributions,

this work would not have been realized.

Richard LeRoy Routh

WPAFB, OH

August 1983

ii

*•° . .. * - *q . " ". *. "* "I . ° .,

Contents

V.'

Preface

List of Figures v

Abstract. vi

I. Introduction 1

A. Background and Problem 3
B. Scope of Solution. 5
C. Assumptions 6
D. General Approach and Summary of Current Knowledge. 7
E. Standards 9
F. Materials and Equipment 9
G. Other Support 10
H. Sequence of Presentation 10

II. Existing Framework 14

A. The Voice Decoder. 14
B. The English Parser - Its Theory and Application. . 26
C. Concept of Solution. 36

III. Design 42

A. Top Level Design 43
B. Intermediate Level Design 51
C. Low Level Design 71

IV. Implementation, Testing, and Validation......... . 72

A. Implementation 72
V.. B. Testing and Validation 77

V. Summary, Conclusions, and Recommendations 92

A. Summary and Conclusions 92
B. Recommended Improvements and Enhancements 98
C. Possible Future Extensions of this Work100

Bibliography 102

Appendix A -- SPEREXSYS Program ListingA-i

Appendix B -- Sample RunB-i

Appendix C -- User's Manual C-i

Appendix D -- How a Speech Recognition System should

be Developed D-i

4. iii

. ,. -. ': .''. '' " . . ', ' ..-.. - .-........-]

%o-T

Contents

Appendix E -- Short Term Memory PhenomenonE-1

Appendix F -- Longer Word Preference Phenomenon F-I

Appendix G -- Data Dictionary G-1

VITA V 1

[.,.,Accessio0n- Fo r

-I.I

• '-DTI - TAB

- " Unannoun 'A 1 [-

Justifira

Delete in distribution statement: for U.S.0
Government Agencies per Capt. Milne, AFIT/EN DtB...ruton

Ava Ib, it y Codes __B

Dist Special

.iv

.4,

Aiev3~l o

List of Figures

*Figure Page

1.1 Hierarchies of Speech Recognition. 3

2.1 Example output (OUT2) of measurement routines
(TRYDIST5 and LISTER2) using second (Hamming
window) prototype set on the utterance "zero"~.. 19a

2.2 Hierarchical Design of the SPEREXSYS 36

3.1 Major Components..................43a

3.2 SPEREXSYS..................... 45a

3.3 English Parser Front End (EPFE)............47a

3.4 Semantic Analyzer...................48a

3.5 Structure chart of SPEREXSYS............52a

3.5a Structure chart of RANKSENTS............54a

3.6 Structure chart of EPFE...............57a

3.7 Structure chart of FORMNXGS and sub-modules 59a

3.8 Structure chart of INTERFVOCDEC and sub-modules. . 61a

3.9 Structure chart of DECTOPWDS and sub-modules . . . 63a

3.10 Structure chart of STARTNSTS and sub-modules . . . 65a

3.11 Structure chart of KILLOWSTS and sub-modules . . . 67a

3.12 Structure chart of ITEPREST and sub-modules. . . 70a

.. * 4

Abstract

Subject to the accuracy of the acoustic analyzer and

the accuracy and completeness of the English Parser, a

real-time general solution to the application of English

syntactic constraints to spoken English recognition has

been developed. This solution is functionally equivalent,

in many ways, to the syntax processing of spoken English in

the human brain. Because it closely models the syntax

processing of the Human Speech Recognition System (HSRS),

it is most effective when used with the several levels of

semantic analysis which are also evidently operational in

the HSRS as has been shown in this thesis. Hence, this work

may well be a necessary part of the the eventual general

solution to the English speech recognition problem,

vi

I. Introduction

As computers become more capable of performing complex

and intelligent tasks, they become both more useful and

easier to use. Computers are becoming more useful because

their capabilities to solve complex problems is increasing.

They are becoming easier to use because their increased

speed, size, and complexity allow them to be programmed to

use the communication methods which humans prefer. The more

this happens, the less special training is needed on the

part of the user. One of the goals of this evolution is to

provide the layman with the capabilities which the computer

can afford him without any special training whatsoever. The

ability to type, the learning of computer protocols, and

the speaking with distinct and separated speech all fall

into the category of special training. There is, therefore,

a need to build an interface to computers which is capable

of understanding normal speech. This problem is referred to

as the man-computer communications gap.

This communications gap between humans and computers

r .is evident in that only a small fraction of the human

population is sufficiently educated to be able to use

computer systems. A significant portion of bridging this

gap involves the learning of special codes, languages,

typing skills, et cetera, in order to train the human user

to communicate with the computer.

The task of providing these problem solving"J
)

" " . . " .q "g " . " . " , . . , . . . , . ' • . ' . . . , * " . • . ." , . ' - ., , , " 1.

capabilities to a great many more people would be much more

easily realized if the computer could be taught to

understand common English rather than people being taught

to communicate in computer languages. It is to this end

*that this research is directed.

A great deal of researc- has already been directed at

shrinking the man-computer communications gap. Other than

for some extremely restricted applications, this research

has produced small vocabulary, speaker dependant, isolated

word speech recognizers. What is required is a real time,

large (virtually unlimited) vocabulary, speaker

independant, connected word speech recognizer.

A normal spoken English interface to a computer

promises to provide the enormous capabilities of the

electronic computer to the non-technically trained person.

This would facilitate great technical advances in all

fields of human interest and endeavor. A speech interface

with a computer is a difficult problem to solve. Its scope

and complexity are beyond an individual masters degree

level research effort. However, since complex problems are

often solved by dividing them into less complex subtasks

and then solving these simpler subtasks one at a time, this

researcher proposes to approach the solution to this

difficult problem by solving one of its subtasks.

4.

2

°16

_____ ____ _ ___ ___ ____

A. Background and Problem

In order to provide a solution to the common speech
computer interface problem as previously described one

should consider the following model:

VOCMV

SEANI PROCESSORE

Figure ~ ~ ~ ~ ~ ~ ~~- 1..Hearhe7f1pehReonto

SYTATI
MEOR

This modSe aR rpsdb eisn(e 57) ti

beleve tWbOnRcLatDschlgca oelo o
MOELFAT

4FCA

f~f U3.

-. - - --. i -

speech is processed in the human brain and will be
.-4.

discussed in more detail in later chapters. It can be seen

that in this approach the first step is to process the

output of the voice decoder (which is the acoustic

processor in Figure 1.1) through a syntactic parser. This

is necessary because contemporary voice decoders are not

accurate enough, nor is there sufficient information in

word sounds alone, to correctly reconstruct the input

speech. Both syntactic and semantic feedback should be

provided to the voice decoder in order for it to choose

properly from among its available decoded options.

For example: In the sentence: "The ewe had a lamb,"

the word "ewe" sounds identical to the word "you" and the

pronunciation of the letter "u." It is not possible for the

voice decoder to consistently make the right decision based

only on the sound of the word. It is often found

(especially in connected speech) that both syntactic

information (grammatical correctness -- which is sufficient

in this example) and semantic information (meaning) are

needed in addition to the accurate mapping of the sound of

the uttered input to the sounds of tht words in the

computer's vocabulary.

The purpose of this research and thesis is to build

such an interface between the voice decoder being developed

here at the Air Force Institute of Technology under the

guidance of Dr. Matthew Kabrisky and Major Larry Kizer, and

the Syntactic/Semantic English parser which was developed

;44

-0 I
° .. . I 4 . .- *~

by Dr. Robert Milne at the University of Edinburgh,

Scotland.

B. Scope of Solution

It is important to realize that a complete solution to

the Spoken English Recognition Expert System (SPEREXSYS)

problem is a ongoing process. The quality of the solution

is dependant on the quality of the voice decoder and the

quality of syntactic and semantic analyzers. The quality of

the voice decoder is dependant on its accuracy, its

vocabulary, how well it handles connected speech, how well

it understands various dialects, its look back ability, and

so forth. The quality of the syntactic and semantic

analyzers depend on their vocabularies, the completeness

and correctness of their grammars and semantic rules, the

accuracy of the algorithms they use to decide among

otherwise equally viable options, and so forth. It is

therefore apparent at the outset that the scope of the

SPEREXSYS solution is greatly constrained by the quality of

the two modules it interfaces.

The interface between the voice decoder and the

English parser is useful in that it promises to improve the

accuracy of the voice decoder by assisting it in choosing

among otherwise nearly indistinguishable decoding

alternatives. It does this by selecting the highest

probability voice decoder outputs and allowing the English

5

. * . . *

parser to comment on their grammatical correctness. The

precise algorithms for doing this will be described in

chapter three. The SPEREXSYS then selectively applies these

comments to the voice decoder output and feeds the results

back to both the voice decoder and the English parser until

an acceptable solution has been found. An acceptable

solution is defined to be one which is grammatically

correct and which is above the error threshold of the voice

decoder. It follows then that a major purpose of this

project is to determine how much of an impact the English

parser has on the reliability of the voice decoder output.

In addition, the SPEREXSYS is to be written and

.4 documented in such a way that it lends itself easily to

modification in order to incorporate improvements in not

only its own software but also future improvements in the

voice decoder and the English parser.

C. Assumptions

This thesis effort is predicated on three assumptions.

The first is that the voice decoder is fairly accurate.

This means that the word which was actually uttered into

the voice decoder's input will appear in the top few

choices of the voice decoder's output.

The second assumption is that the English parser

accurately analyzes the grammar of the candidate sentence

strings which are input to it. This includes the

"" "",.6

requirement to assess the degrees of grammatical
1*'

.-"correctness (see the discussion from Bach in the next

chapter) of the candidate sentence strings.

The third underlying assumption is that a two hundred

word vocabulary is large enough to demonstrate the

feasibility of this approach. Fifty word vocabularies

appear to be an upper limit of commercially available voice

decoders. If the approach in this thesis can be shown to

work for at least two hundred word vocabularies, then it

will be successful in demonstrating both the philosophy and

methodology of this thesis approach because it will have

improved the state-of-the-art performance by applying

syntactic constraints to the output of the voice decoder.

Two hundred words is thought to be large enough to

demonstrate the success of this approach while, at the same

time, being small enough to work with in the limited time

constraints of an AFIT masters degree thesis.

D. General Approach and Summary of Current Knowledge

The general approach to solving this problem is as

follows:

The interface accepts all outputs from the voice

decoder. The voice decoder outputs will be all the words

from its vocabulary which have matching scores above some

previously defined error threshold. This will be explained

in greater detail in chapter two. These outputs comprise
.-

-J ' 7

'p.

the voice decoder's best guesses of what was uttered. The

SPEREXSYS then strings these best guesses together based on

the time sequences of reception into the voice decoder. The

mlst probable strings are then sent to the English parser

for analysis. The parser determines whether or not the

* .istrings it has been sent are grammatically correct. If they

are grammatically correct, then it signals the semantic

levels of the SPEREXSYS that an acceptable solution has

been found. If it is not grammatically correct, then the

SPEREXSYS eliminates that string from further

consideration. Since the SPEREXSYS builds grammatically

correct strings deterministically (one word at a time),

several grammatically correct high probability sentences

are constructed from a single uttered sentence. The

syntactic levels of the SPEREXSYS appeal to the semantic

levels for arbitration of these ambiguities.

To this researcher's knowledge, no such interface has

ever been attempted. This may be due in part to the fact

that Dr. Milne's English parser has only recently been

completed and is the only accurate (psychologically correct

model of the human speech recognition process) English

parser which allows the deterministic parsing of a

sentence. It will be shown later in this thesis that this

characteristic is essential to the successful building of

an interface between a voice decoder and an English parser.

Many decisions on error thresholds have had to be made for

the first time. Many algorithms on option selections (and

8

the associated selection criteria) have been developed as

original work. Many decisions in these areas have been made

for the first time because up until this thesis, this was

an unsolved problem.

E. Standards

If, within a few seconds or less (near real time), the

SPEREXSYS can successfully pick the correct string (based

on ambiguities which only need syntactic constraints for

correct decisions) from among the millions of possible

strings which can be constructed from its top few choices

at each word of sentence lengths of about ten words (if

only the top five choices for each word of a ten word

sentence are used to construct candidate strings, there are

9,765,625 possible strings that can be constructed), and if

it can do so repeatedly for different uttered sentences,

then the concept and methodology used to build the

SPEREXSYS will be considered validated.

F. Materials and Equipment

The materials and equipment which were needed to

complete this thesis were all available at the outset of

the thesis. They are listed as follows:

1. VAX 11/780 computer and the Franz LISP compiler

and interpreter,

9

2. The English parser and the Avionics Laboratory

DEC-10 computer on which it runs,

3. The voice decoder and the Pattern Recognition

Laboratory computer on which it runs, and

4. Four modems and their associated computer ports

which will be used to connect the VAX computer

with the DEC-10 computer and the VAX computer

with the Pattern Recognition Laboratory

computer.

G. Other Support

Computer center operations personnel for all three

computers were required to identify modem ports and to hook

up the modems which will connect the computers together.

H. Sequence of Presentation
I

This first chapter provides the reader with a broad

perspective of where this research fits in the world of

computer interface developments. It serves to acquaint the

reader with the background relevant to this research and to

provide a brief description of the purpose, scope and

complexity of the research which was done for this thesis.

The second chapter has been written to provide the

reader with a more detailed understanding of the problem.

.,a, Included in this chapter is a discussion of the theory of

10

" -. - - - --- ..

speech recognition and how the voice decoder implements

that theory, as well as a discussion of the inadequacies* of

a stand-alone speech recognizer.

Also included in the second chapter is a discussion of

transformational grammar and the implementation of this

grammar theory into the English parser used in this

research. The chapter concludes with a discussion of the

concepts which relate to the solution of this problem.

Chapter three describes the structure and design of

the Spoken English Recognition Expert System (SPEREXSYS).

The design is presented in three phases. Phase one

describes the top level design which discusses the system

interfaces and the reasons for choosing them in the manner

used.

The second phase explains the intermediate levels of

design through the use of structure charts. Design problems

are discussed and the rationales used in making the design

decisions are described.

Lastly, this chapter briefly discusses the low levels

of the design.

Chapter four deals with the specific implementation of

the design as it relates to the machine peculiar

interfaces. Other miscellaneous implementation details are

discussed. The rest of the chapter is devoted to explaining

the validation and testing philosophy and procedures. Each

test is defined in terms of how it was used to help

validate the design. The results of each test are discussed

11

..J

:._ ,', , ., ..;,. ., -._ ,, . - ,_4 .- _. -. . . , .,_ - _";• ' . . _I i.b , I 'I. ("- -'o . " "

I °, t I -. + . . + - , - -

.3

as well as an explanation of the conclusions which are

3* dirawn from the analysis of the test results.

The fifth and final chapter presents a summary of this

thesis, an explanation of how the SPEREXSYS can and should
.-

be used, and a discussion of the recommended improvements

and enhancements to the system. The chapter concludes with

* a presentation of the possible future extensions of this

work.

Appendix A is a listing of the Franz LISP code of the

SPEREXSYS. This listing includes many comments on the

function of the code, line-by-line, and module-by-module.

Appendix B contains the results of selected sample

runs from the testing.

Appendix C is a short users manual which should be of

great help to future SPEREXSYS users and developers.

Appendix D is a discussion of how what is already

known about the Human Speech Recognition System (HSRS) can

and should be more reflective of speech recognition systems

as they have been developed to date.

Appendix E discusses the function of a short term

memory and how it relates to speech recognition. A brief

example is included.

Appendix F presents the formulation and experimental

verification of the hypothesis that the HSRS favors longer

words over shorter words.

Appendix G is a brief data dictionary which includes

primarily global data descriptions. A few key local data

12

descriptions are also defined.

.

II. Existing Framework

The nature of the SPEREXSYS program is to function as

a smart interface between the Voice Decoder and the English

Parser. It is thgrefore necessary to understand the theory

and the function of both the Decoder and the Parser in

order to gain an appreciation for the parameters which

constrained the potential performance of the SPEREXSYS from

the outset of its development. This background will also

assist the reader in understanding why certain SPEREXSYS

design decisions were made.

This chapter discusses the theory and function of both

the Voice Decoder and the English Parser. After this

background foundation has been laid, the chapter will

conclude with an explanation of the concept of the solution

to the SPEREXSYS design problem.

A. The Voice Decoder

The Air Force Institute of Technology has been

developing a speech recognition machine for the past few

years under the guidance of Dr. Matthew Kabrisky and Major

Larry Kizer. Its incremental development and improvement

has been the result of the efforts of a series of students,

each working on a graduate level research project. A

conceptual summary of their combined research and results

is presented here in order to acquaint the reader with a

14- 4 . . - - - - . * . *- *

general understanding of the theory and function of the

Voice Decoder used in the development of the SPEREXSYS. In

addition, some general theory of the acoustic analysis of

speech is discussed along with mentions of other approaches

to solving the same problems.

Referencing the Levinson model (Figure 1.1), the Voice

Decoder performs the function of the acoustic processor.

Specifically, it examines the spoken input utterance and

makes guesses as to what words might have been spoken.

Doing only this much has consumed the efforts of some of

science~s brightest people for over two decades without

completely satisfactory results to date. By "completely

satisfactory" it is meant that the acoustic processor

(voice decoder) approaches the accuracy of the acousticci
analyzer in the human speech recognition system (HSRS). As

this discussion develops, the reader should remember two

things:

1. Acoustic processors have been developed to

the point that they are moderately accurate

at guessing words from a controlled input

string when the vocabulary of possible

choices is restricted to less than 100

words.

2. A completely satisfactory acoustic processor

is only a small (nevertheless critical)

functional subset of the speech recognition

154" - - -j

process (see Figure 1.1). The upper levels

of the process -- the syntactic, semantic,

and response generation levels -- are

dependent on a reliable "front end." That

is to say: a chain is only as strong as its

weakest link and a speech recognition

system is no exception.

The spoken input is in the amplitude versus time

domain. This is the form of the output of a microphone. It

is also the form of the output of the ear drum to the inner

ear mechanism. Since, as has already been mentioned, sounds

vary so considerably when spoken by a human speaker (even

when he attempts to reproduce the same sound), simple

direct template matching of stored sounds to the output

mapping of a sound in the amplitude versus time domain is

woefully inadequate. There are amplitude and frequency

variations as well as time warping between any two sounds

produced by a human so as to make straight template

matching extremely unreliable. There are word recognition

schemes which attempt to normalize amplitudes, allow for

small variations in frequency, and employ complex time

warping. This approach has consistently proven to yield

unreliable results and to be extremely computation bound

for a general solution. This tends to suggest that a

different feature set must be examined.

1 An examination of the process in the HSRS reveals that

16

. ,'_'~~~- :6 , ,. -_.. . . .-_. ,. ..

the signals are converted from the amplitude versus time

*domain (output by the ear drum) to the amplitude versus

frequency domain (the signal in the auditory nerve) where

the frequency axis is logarithmic. Many approaches

incorporate this knowledge by attempting to classify the

spoken inputs on the basis of some form of a Fourier

transform feature set. The AFIT Voice Decoder employs this

method of analysis in order to classify eight millisecond

time slices of uttered speech as specific phonemes.

Some speech recognition approaches such as Linear

Predictive Coding (LPC) do not use a Fourier based feature

set, but instead, attempt to classify the uttered input

based on feature sets which are probably significantly

different than those used by the HSRS.

Some acoustic analyzers do use Fourier based feature

sets, but process entire words instead of first breaking

these words into phonemes. Of course, before this can be

done, the beginning and end of words must be known. This is

not so hard if the words are spoken so that there are

significant time gaps between words and if the ambient

noise is low. This (time gaps between words) is called

discrete speech or isolated word recognition. While this is

not the way English is naturally spoken, it is, however, a

constraint which greatly simplifies speech recognition.

The AFIT Voice Decoder currently uses isolated word

recognition. It is extendable to connected (natural) word

"".' speech but this has not yet been done. The reason it can be

J

- 17

, ,€.€ '..'; .,-' -' . .,.-. ?- .,.. .- . .- ; , • . , ,.. -. ;'. . ;.-*,. . .. *,

extended to connected speech is that its analysis of word

choices is based on a serial string of phonemes which

represent the uttered input. This greatly constrains the

possible word boundaries to such a small set that

exhaustive searches of word boundaries becomes feasible.

The speech recognition methods which do not first

identify phonemes before attempting to identify words must

rely on some type of time warping algorithm. This is

necessary because a word can be compressed and expanded at

multiple points (in time) in its utterance when compared to

a previous utterance of the same word. For example, one

utterance of the word "three" may take 250 milliseconds to

produce. Even if all future utterances of the word "three"

are time normalized to 250 milliseconds, the duration of

the "th" sound may be 40 milliseconds for one of the

utterances and 50 milliseconds for the other. Similar

differences for the other phonemes in "three" are also

likely. So until these time warpings of the different

phonetic sounds in a word are time warped back to match the

standard representation of the word (the store prototype

against which all future utterances will be compared), no

significantly reliable mapping of an input utterance to a

stored prototype can occur.

In the AFIT voice decoder, once a string of phonemes

has been output from the first stage of the Voice Decoder

(Ref 20), the second stage analyzes this string to

determine the best match of this string of phonemes with

18

p J .

the phoneme strings which are characteristic of the words

in its vocabulary (Ref 18). This is a very difficult and

complicated problem beause the output strings are quite

variable.

The difficulty lies in the fact that, because the

input speech is quite variable, the first stage (phoneme

identification) characteristically makes many wrong

guesses. The second stage, therefore, must attempt to find

a best word match using inaccurate input. To do this,

straight template matching has proven not to work well.

To illustrate the problem, refer to figure C.6

(Seelandt:260). Figure C.6 is reproduced here as figure

2.1. It shows the output of the first stage of the Voice

Decoder for 48 time slices. This output for the utterance

"zero" is in the form of a table of the best five guesses

(with weighted degree of certainties normalized to 100) for

the input utterance for each time slice. The following

questions/problems are immediately apparent:

1) When does the word start and stop?

2) When should one discard data due to

excessive background noise or transition

between phonemes?

3) What algorithm, if any, should be used to

decide which of the five most probable

guesses to use for each 8 millisecond time

slice.

.4 19

200 XY-1O0 XX- 1 OH- 49 OU- 39 ZX- 34
201 X)-l00 XX- 70 OH- 48 OU- 38 ZX- 34
2c2 XY-100 XX- 71 CH- 49 OU- 38 ZX- 3d
_)r3 X) -tO 10, ,07 ' - - "" - " ---- .fl , . . r

"C4 XX-1C' XX- 66 ZX- 46 kE- 44 OH- 33
205 XX-100 IE- A3 XX- 63 RE- 62 ZX- 57
206 IE-100 XX- ;8 IE- 90 KX- 89 TX- 86
207 IE-tO') RE- 7 IE- 97 AE- 94 EE- 93
206 IE-100 EE- ":6 RE- 91 EE- 88 IE- 88
209 IE-1O0 EE- c4 FX- 90 IE- 90 FX- 89
210 IE-1O0 FX- 1.7 RE- 96 EE- 96 EE- 96
211 RE-1C") OU- c 6 IE- 94 FX- 93 IE- 93
212 ZX-1C00 OU- '4 RE- 94 AY- 90 NX- 84
213 RE-1O0 ZX- ,6 OU- 95 AY- 92 NX- 85
214 ZX-100 AY- 59 IY- 97 NX- 95 OU- 91
215 IY-IO,: AY- 57 ZX- 98 OU- 92 IY- 90
216 ZX-10. IY- 59 AY- 95 ER- 89 RE- 89
217 ZX-100 AY- 54 NX- 92 IY- 91 IY- 90
218 ZX-100 RE- 97 NX- 96 ER- 95 IY- 95
219 RE-1O0 ER- 56 OU- 96 ZX- 94 NX- 94
220 OU-100 RE- 94 ER- 89 NX- 89 NX- 88
.221 OU-1O0 VA- 95 RX- 88 ER- 87 NX- 86
222 OU-O,) UA- 99 VX- 96 ER- 67 RE-85
223 UA-IO0 VX- 92 ou- 89 RA- 82 ER- 79
'124 UA-10,) RA- 93 OU- 93 VX- 91 OR- 81
225 O-100 UA- 96 RA- 94 OH- 93 VX- 90
226 OU-100 VA- 9S TX- 89 OH- 88 OR- 84
227 OU-100 UA- 91 OR- 95 OH- 90 OU- 85
228 UA-I00 CU- 98 OU- 86 NX- 84 OR- 83
229 UA-1O0 ou- 95 OU- 88 VX- 87 WU- 85
230 OU-100 WU- 98 VA- 95 OU- 92 NX- 92
-231 OH-I00 OU- 99 RA- 96 WU- 95 UA- 95
232 OU-I00 OU- 97 UA- 96 RA- 95 TX- 90'
233 OU-IOC OU- 82 WU- 81 NX- 79 UA- 78
234 OU-100 OU- 86 NX- 80 WU- 78 UA- 77
235 OU-100 WU- 8A OU- 80 NX- 80 UA- 77

. 236 OU-100 WU- 91 OH- 82 NX- 79 OU- 74
:237 OU-IOC WU- 88 OH- 86 NX- 81 OH- 72
238 OU-iO., WU- 90 OH- 90 NX- 82 OH- 73
239 OU-10 OH- 97 WU- 94 OH- 81 NX- 77
240 OH-IO- WU- 90 OU- 89 OH- 82 WU- 77
241 OH-IO;0 WU- 91 OH- 87 RA- 86 OH- 84
242 OH-IC' PA- 9P OH- 91 WU- 89 WU- 88
243 OH-10(OH- 99 WU- 94 OR- 90 RA- 89
244 OH-IO. RA- 8q OR- 89 WA- 89 OH- 87
245 OF -1O OH- 99 RA- 95 WA- 94 RX- 92
246 R -100 AH- 97 OH- 96 WA- Qr RA- Q

247 Ari-10C WA- 94 O- S PA- R-, Rd- 94

Figure 2,1. Example output (OUT2) of measure-
ment routines (TRYDIST5 and LISTER2)
using second (Hamming window) pro-
totype set on the utterance "zero".

o1'a

A. -A -.7

To solve these problems in the second stage of the

Voice Decoder, Fuzzy Set Theory was used. Fuzzy Set Theory

allows for partial membership in a set. Each input phoneme

has some degree of membership in all phoneme sets

(templates) stored in the program's dictionary. Its degree

of membership is determined by the likeness of its (the

input phoneme) elements to the elements in the

stored-dictionary phoneme's set.

The Fuzzy Set Word Guessing algorithm identifies

characteristics for comparison as elements within the sets

and computes coefficients of likeness between the input set

elements and the stored word set elements. These

coefficients are each weighted according to the program's

algorithm to determine the input string's degree of

membership in the sets which represent the stored words.

The stored word set in which the input string has the

highest membership is the first and best guess as to the

identity of the word which was input into the Voice

Decoder. The second guess word is the word set in which the

input string has the next greatest membership and so on.

The coefficients of the elements of each set are tuned

dynamically and heuristically by both the programmer at

initialization and the program during execution. This

allows for the continued improvement of accuracy of the

program.

It has been mentioned that isolated word speech is

20

S ." " - * S- * S'. *. - . " " ' " " " S " "

easier to recognize than connected word speech. That is

because in isolated word speech the word boundaries are

clearly defined. In natural (connected) speech they are not

clearly defined. It is common in connected speech to have

the initial and trailing phoneme of a word be somewhat

mutilated due to the fact that the trailing phoneme of a

word is required to slide evenly (acoustically transition)

into the initial phoneme of the next word. In essence, the

two compromise slightly in order to transition smoothly.

This results in phoneme mutilation and, therefore, makes

the task of phoneme identification more difficult. In

addition to this complicating phenomenon, when a word's

trailing phoneme and the next word's initial phoneme are

the same, they are commonly shared. For example, in the

normal utterance of the two words "white towel," the

phoneme "t" occurs only once. It is shared by both the word

"white" and the word "towel." Sometimes even more than one

phoneme is shared when transitioning from one word to the

next. This more commonly happens when the 'speaker is

speaking rapidly. The two words "mast string" when spoken

quickly may share both the "s" and the "t" sounds. In this

instance, these two words are also acoustically

indistinguishable from the single word "mastering." In

order to find the word boundaries in connected speech,

since acoustic analysis is insufficient in determining them

(even with a perfect acoustic analyzer, there is

insufficient information in the acoustics alone to do

21

this), syntactic and semantic information must be used.

That is one of the reasons that this thesis has been

performed. It allows only grammatically correct (syntax)

word strings to be formed. This syntactical constraining of

word guessing in the acoustic processor helps to find word

boundaries (and improve the reliability of word guesses)

but: even perfect syntactical analysis is insufficient to

resolve many ambiguities. The following example helps to

illustrate that several levels of semantics are also

required in order to accurately recognize conversational

speech:

Mary works in the cosmetic section of a

large department store. She has just

completed the monthly inventory and is now

engaged in ordering the items which are in

short supply. Her boss inquires as to

whether she is going to be ordering both

hand lotions and facial makeup kits. She

replies, "I am ordering more hand lotions

because we're pretty low on them this

month. We still have a pretty good supply

of makeups though, so I won't be doing any

makeup ordering."

If we input only the last two words of Mary's reply to

a Voice Decoder which is capable of perfect accuracy in

interpreting input phonemes (which, of course, AFIT's is

.*: .-*.. not at the present time), the following interpretations

-2

22

" ", ", "' ' , , ."""..,-," ''", ...s .. . "" " ._. . . A,, . ,.kL t °, . i A , r .4- i'i i'

. ' - . .,- -

would be completely legitimate:

1) makeup ordering

2) make up ordering

3) make cup ordering

4) may cup ordering

5) makeup or during

6) makeup order ring

7) makeup poor during

8) makeup portering

9) makewp porter ring

10) make up or during

* 11) make up order ring

12) make up poor during

13) make up portering

14) make up porter ring

15) make cup or during

16) make cup order ring

17) make cup poor during

18) make cup portering

19) make cup porter ring

20) may cup or during

21) may cup order ring

22) may cup poor during

23) may cup portering

24) may cup porter ring

25) make a poor during

* 26) make a porter ring

23

* - . ,-.

27) make a portering

Of these 27 distinct phoneme based interpretations of

the two words which were input into the hypothetically

flawless Voice Decoder, only the first, second, third,

fourth, eight, thirteenth, eighteenth, and thenty-third can

fit syntactically with the rest of the sentence. Only the

first four of those fit semantically within the context of

the sentence; and only the first one (makeup ordering) fits

semantically within the context of the entire conversation.

This example illustrates some of the problems

encountered when attempting to interpret the utterances of

connected speech with even a perfectly accurate Voice

Decoder. It also illustrates the ultimate need to filter

the Voice Decoder's output through first a syntactic

analyzer, then a sentence-contextual semantic analyzer, and

finally through a global-conversation-contextual semantic

analyzer.

The last performance criteria of an acoustic processor

which will be discussed in this chapter is the vocabulary

size. As the accuracy of an acoustic processor increases,

the distinguishability between the words in its vocabulary

increases. As this distinguishability between words

(resolution) increases, the vocabulary size which can be

reliably (for some given degree of reliability)

differentiated increases. The size of the vocabulary which

a voice decoder can handle is therefore limited by its

".". accuracy for some given degree of reliability. Since the

24

S.%

16 W--- - w -- w. W .- -

addition of syntactic and semantic constraints on the word

guessing of the input improves the reliability of a speech

recognizer, it also allows for an increased vocabulary

size. It should be realized, however, that if the

vocabulary search is not done in parallel, the processing

time will be increased for larger vocabularies.

The astute observer will realize that the accuracy of

the state-of-the-art speech recognizers is fairly poor as

evidenced by the fact that they all restrict the upper

bound of the vocabulary size to less than one hundred

words. It is this researcher's contention that the solution

to this accuracy problem is to more closely mimic the

functions of the HSRS. Some suggestions for this are

contained in chapter five and appendix D of this thesis.

J 25

'.,

B. The English Parser - Its Theory and Applicatior

The English Parser is the tool which the SPEREXSYS

used to insure that only interpretations which are

grammatically correct were accepted. The English Parser is

the result of the Ph.D. research done by Robert W. Milne.

It continues to undergo modification and improvement as new

rules and requirements are identified (especially during

the development of the SPEREXSYS). Because the English

Parser was structured in a strictly top-down modular

fashion, it lends itself easily to expansion and

modification. Before examining the specific theory and

design of the English Parser and its functional application

as a grammatical filter in this project, it is useful to

discuss the nature of a grammar. This discussion will lead

to an understanding of both why a transformational grammar

was used and why the particular architecture of Milne's

Parser is ideally suited for use in a project such as this

one.

Koutsoudas has said that "a grammar is a device that

tells the reader [user) how to construct an infinite number

of correct sentences of a language and no incorrect ones

(Ref 13:1)." In order to develop a good computer program

which could be used as a syntactic filter, it was necessary

a, to study English grammar and then to build a program which

was an accurate model of the rules of that grammar.

The task of choosing a good English grammar to use as

26

a syntactic filter for common speech is complicated by the

observed phenomenon in English that there exist varying

degrees of grammatical correctness. Koutsoudas points out

that there are "maximally grammatical" and "questionably

grammatical" sentences in English. A good grammar should

generate the maximally grammatical sentences first in order

to be able to identify the deviations of the questionably

grammatical sentences (Ref 13:2). One must be careful,

therefore, to choose not only a grammar which generates

only correct English sentences, but one which

preferentially generates the most correct ones.

There are two approaches to formulalting a grammar.

These are the Familiar Linguistic Theory approach and the

more recent Transformational Analysis approach. In

comparing these two approaches, Chomsky writes:

Our main conclusion will be that familiar

linguistic theory has only a limited

adequacy - i.e., that it is attempting to

do too much with too little theoretical

equipment. ...It will be shown that the

theory of transformational analysis can be

formulated in the same completely

distributed terms that are required anyway

for lower levels and that a large and

important class of problems that arise in

the rigorous application of familiar

linguistic theory disappears when it is

27

extended to include transformational

.analysis (Ref 5:64).

Familiar Linguistic Theory approaches the task of

formulating a grammar by listing a separate rule for each

specific case of sentence formulation. This approach

produces grammars which are extremely lengthy because each

of its rules specifies an extremely restricted class of

sentences. One might well argue that Familiar Linguistic

Theory is only a very large collection of trivial cases. On

the other hand, Transformational Analysis attempts to

describe a grammar in terms of General Linguistic Theory.

Bach elaborates on the nature of General Linguistic Theory:

General Linguistic Theory ... must present

a set of terms and distinctions sufficient

to account for the rich variety of

grammatical systems given in the world's

several thousand languages, but limited

enough to explain the universal features of

these natural languages. Each theory of a

specific language can then be taken as a

particular exemplification of the types of

systems predicted by General Linguistic

Theory. To the extent that the notions of

Transformational Theory are adequate to

this task, it offers a preliminary picture

of what languages in general are like (Ref

2:2).

28

-.

The following brief summary and examples are offered

to acquaint the reader with the general concept of an

English Transformational grammar.

Transformational Grammar begins with the hypothesis

that every sentence is composed of two structural elements:

a noun phrase and a verb phrase. Graphically this concept

is presented as follows:

S

"t 1 VP

From this hypothesis, a complete English grammar can

be generated using less than thirty rules. (This is a major

reduction from the hundreds of rules required by Familiar

Linguistic Theory to specify only a subset of English

grammar).

For example, one rule of Transformational Grammar is

that the noun phrase can be implied. Hence, the sentence,

"Got" has an implied noun phrase in the second person and

the verb "Go" is the complete verb phrase. In the sentence,

"The dog did bite Mary," the noun phrase and verb phrase

are both expanded according to other Transformational

Grammar rules:

-"a.,** S -

NP

DIET NP AUX VP

THE DOG DID

VP NP

BITE MARY

29

a-

* '.-. * . .'.2-. . '* *;-

There are two types of rules in Transformational

Grammar. They are P-rules and T-rules. P-rules are rules

which allow phrase replacement for single elements. T-rules

are Transformational rules which allow for the

transformation of sentential elements to reconstruct

different, but legal, sentences from a root sentence (Ref

13: chapter one).

It is a P-rule which allows a noun phrase to be

replaced by a determiner and a noun phrase. (Hence "the

dog" satisfies the structural requirement for a noun phrase

in the original hypothesis).

The concept of using transformations such as the

passive and question transformations make for a grammar

that avoids the need for "rules of incredible complexity"

which the more traditional (Familiar Linguistic Theory)

approaches require (Ref 1:100-101). The following example

helps to illustrate this.

-In the following sentence: "Did the dog bite Mary?" it

is a T-rule which allows the statement to be transformed

into a question by simply changing the position of the

auxilliary from the third word to the first word in the

sentence. Another rule specifies that all sentences have

auxilliaries even though some are understood and do not

appear in the original sentence. Hence the sentence, "The

dog bit Mary" can also be transformed into the question:

. "Did the dog bite Mary" (by use of the previously

30

demonstrated T-rule and another rule which changes the form

of the verb from "bit" to "bite") or into the question:

"Has the dog bit Mary?"

The general philosophy of Transformational Grammar is

embodied in a statement from Chomsky:

In general, we introduce an element or a

sentence form transformationally only when

by so doing we manage to eliminate special

restrictions from the grammar, and to

incorporate many special cases into a

single generalization (Ref 5:416).

Transformational grammar, therefore, is a general

theory of grammar which provides general rules for

describing legal sentence syntax. For example, it is this

transformational grammar which allows one to say: "The boy

runs," but does not allow: "The boys runs." It specifies

that in the second case, the "s" must be dropped off the

end of the verb "run" in order to produce a syntactically

(grammatically) legal sentence. It is also transformational

grammar which specify proper word order so that "The red

ball" is syntactically legal, but "The ball red" and "Ball

red the" are illegal syntactic constructions. These sorts

of rules form the basis for the application of the

syntactic constraints which help in the problem of

identifying illegal word combinations such as those likely

to be produced by the acoustic analyzer.

A good English parser must be a functional duplicate

43

--- 31

S..o . .o. .

(produce identical outputs for a given set of inputs) of

the Human Sentence Parsing Mechanism (HSPM), that is to

say, it must fail where the HSPM fails and it must succeed

(display relative computational speeds for different types

of parsing problems) where the HSPM succeeds (Ref 17:

chapter one). This is accomplished in Milne's parser by the

techniques of "limited lookahead" and "wait and see."

"Limited lookahead" means looking ahead in the input stream

before deciding which grammar rule to execute and hence,

which will be the next state (Ref 17:16). "Wait and see"

means that, if the parser is unsure of a situation, it does

not make a random guess. Instead it waits until it has

enough information to make the decision correctly (Ref

17:16). By employing these two techniques in conjunction

with transformational grammar, a deterministic parser was

,, developed (Ref 17: chapter two and appendix B). This

differs from previous parsers based on transformational

grammars which were of the Augmented Transition Network

(ATN) type.

The ATN type of parser employs tree search techniques

for all syntactically correct solutions. This approach is

inherently slower because it extensively uses the time

consuming process of backtracking. It is also a less

accurate method of parsing English since it produces all

correct syntactic solutions instead of the maximally

grammatical one(s). Finally, the ATN parser is an

" unreliable model of the HSPM since it does not fail when

32

.........
" " " ' • .- ' " " '- ,, .,- , ,. , - " ~ . . ' '. , ". ' " " i ' ,"

. ."

the HSPM fails and, therefore is not a desirable syntactic

filter for common spoken English.

Deterministic parsing, on the other hand, prohitits

backtracking. It works on the realization that "there is

enough information in the structure of natural language in

general, and in English in particular, to allow

left-to-right deterministic parsing of [most]... sentences"

(Ref 17:14).

The elimination of backtracking dictates more

efficient parsing. A well written deterministic parser is

more accurate (in that it psychologically models the Human

Speech Parsing Mechanism) and faster since it does not

waste processing time (and other resources) constructing

TIN parsing paths which will prove to be unsuccessful. Milne

explains:

The assertion of deterministic parsing is that

a natural language grammar can be essentially

a characterisation of a deterministic machine.

However, there are two ways a grammar

interpreter using a seemingly deterministic

grammar can simulate non-determinism. These

are backtracking and pseudo-parallelism.

We can prohibit backtracking by insisting that

all grammar substructures are permanent. In a

parsing context this means that, if one item

is attached to another, this attachment can

never be broken... If a word is disambiguated

33

to a certain part of speech, it can never be

changed to a different part of speech... This

prevents the grammar interpreter from pursuing

a guess that turns out to be incorrect.

It is possible to avoid backtracking, but

simulate nondeterminism, by taking all

possible paths from a given state

simultaneously. This is known as

pseudo-parallelism.

This method, however, is still not permissable

for a deterministic parser. Using

pseudo-parallelism, it is possible to follow

each permissable transition simultaneously. If

one of the paths fails, the parser does not

return to a previous state, but, instead,

"throws away" any structure built and then

terminates that path. This technique is

therefore also dis-allowed. In deterministic

parsing, building a constituent and then

"throwing it away" is not permitted.

We have two points relating to a deterministic

parser. It must neither backtrack nor use

pseudo-parallelism. In deterministic parsing,

should a transition be made from some state,

we are guaranteed that the subsequent state

will be on the path to a successful parse, if

such a path exists. We shall consider this to

34

be the definition of deterministic parsing

(Ref 17:14,15).

Milne has successfully demonstrated that with a two

buffer (one word) lookahead buffer, his parser accurately

models the HSPM (Ref 17: chapters 3,7,10 & 12). Milne's

parser is therefore the ideal choice for use as the English

Parser in the SPEREXSYS.

S.35

"-.

-' 35

....................................--.. --

C. Concept of the Solution

On a macro-level, the Spoken English Recognition

Expert System (SPEREXSYS) has data flows in accordance with

the following diagram:

OUTPUT siwri-Pice
DEII yrli

O I "

e~&.LISH STAIN5 £CPIS

A 1S a1R

j~QrnoTN~ 1 VOICE'~

Figure 2.2. Hierarchical Design of the SPEREXSYS

"* This conceptual model has been chosen because it closely

resembles the Levinson model of the HSRS (refer to Figure

1.1). It is important to note that this configuration

allows both the English parser (syntactic analysis level)

and the semantic analysis levels to review and comment on

the likelihood of words (modify the word probabilities) as

they are output from the voice decoder. This allows some of

36

* * 'f:~~*II *

the key conceptual features of the Hearsay II blackboard

system to be incorpoated into the SPEREXSYS (Ref

7:213-253). Specifically, it allows all levels of syntactic

and semantic analysis to cooperate directly and

simultaneously to help resolve word recognition

ambiguities. This configuration also allows for the modular

development and integration of each of the separate

functions of the SPEREXSYS as recommended by Montgomery

(Ref 18:113).

Having established the conceptual configuration which

will govern the development of the SPEREXSYS, it is now

appropriate to consider the issues which constrained its

design.

Sufficient background knowledge has been reviewed in

this chapter so that the required function of the SPEREXSYS

can be more adequately defined than was presented in the

first chapter.

The SPEREXSYS must apply the constraints of English

syntax as defined by the Milne English parser to word

guesses of questionable reliability which are made by the

voice decoder as it examines the input utterances.

Optimally, these syntactical constraints should include the

application of both deterministic parsing and the one word

lookahead constraints which produce strings that are

psychologically correct in that they approximate the

strings that would be constructed under similar conditions

by the Human Speech Recognition System. In addition, the

37

SPEREXSYS should be designed in such a way that the upper

semantic analysis levels can monitor and influence the word

choice decisions when appropriate.

The use of the words "questionable reliability" in the

above required function statement refer to the fact that,

V. because of both the inaccuracy of the voice decoder and the

-- insufficiency of information in the acoustics of the

speech, the voice decoder may make wrong guesses as to

which word was most likely spoken in any given word time

frame.

In order to keep the SPEREXSYS from becoming so

computationally bound that a real time solution is no

longer potentially feasible, it is imperative that

sentences be constructed in a deterministic manner. The

following discussion illustrates this necessity.

Let us suppose that our voice decoder is so accurate

that it will place the proper word (the word actually

intended by the speaker/user) within the top three most

likely choices 99% of the time. (This is currently beyond

the accuracy of state-of-the-art acoustic processors with

"" any reavonable vocabulary size). Let us further suppose

that the sentence being spoken is isolated speech (which is

easier to recognize than common connected speech) and that

a 14 word sentence is being spoken. For example, let the

sentence be: "The boy gave the gift to the girl wearing the

long green plaid dress." Let us further suppose that the

vocabulary size is large enough to provide words which are
-3

-- 38

i.

fairly close in sound to each of the intended 14 words in

the sentence. The following matrix illustrates the problem

as it has been developed to this point:

probability

of

likelihood Word I Word 2 Word 3 Word 4 Word 5 Word 6 Word 7

Highest The toy gave the sift to the

2nd High. A boy cave a rift two a

3rd High. They ploy save they gift too they

Word 8 Word 9 Word 10 Word 11 Word 12 Word 13 Word 14

grill wearing the long green plaid rest.

girl sparing a wrong grease played wrist.

curl bearing that gong clean glad dress.

It can be seen that several sentence strings can be

constructed from the voice decoder's list of top three

choices. Each of these could then be sent to the English

parser to determine which of these sentences were

grammatically acceptable. Those which are acceptable to the

English parser would then be forwarded to the semantic

analysis levels for further disambiguation. The following

analysis shows that this approach is not feasible.

One sentence which could be constructed for shipment

to the English parser is : "The toy gave the sift to the

grill wearing the long green plaid rest." Another is: "A

39

ke;. - , 7 . .

toy gave the sift to the grill wearing the long green plaid

rest." A third would be: "They toy gave the sift to the

grill wearing the long green plaid rest." It can be seen

that with three different word choices at each of the 14

different word places in the sentence, that the number of

sentences which would have to be constructed and sent to

the English parser would be:

3 14 . 4,782,969.

Currently, it takes the English parser about a half a

second to analyze a sentence. This time could be reduced by

a couple of orders of magnitude if the code was optimized

and run on a much faster (more expensive) machine. With the*-

best that money can buy, one might reasonably expect to

approach one millisecond to process a sentence through the

English parser. If all other processing and communcation

time in the SPEREXSYS is ignored, it can be seen that under

optimal conditions, this 14 word sentence would take: (I

msec/sentence) x (4,782,969 sentences) - 4,782,969 msec.

This is equal to one hour and 20 minutes to process a

single sentence with a marvelously accurate acoustic

processor. Quite obviously, this is an unpractical approach

* to solving the problem. At this point, the reader might

argue that if the analysis were to be completely done in

parallel (over 4 million large computers each processing

one sentence at a time), that real time processing could be

accomplished. The expense, of course, is prohibitive. At

this point the reader might argue that such parallel

40

.,, :k -: o"(*4,*, " .:, ;' "; 2", - -'"- "*i . ,, -; . : ' . ,, ... :' *:. : , - ', ...: . ' ,., ..- '

A64

processing capability exists in the human brain. It should

also be pointed out that the throughput for the human brain

is about 50 bits per second. That is about 400,000 times

slower than the fastest electronic computer operating under

optimal conditions. It can be shown that it would take the

human brain at least several minutes to perform only the

syntactic analysis of this one sentence. It is quite clear

at this point that performing exhaustive tree searches

(such as those used in ATN parsers) is not a feasible

approach to solving this problem. Similar calculations rule

out exhaustive pseudo-parallel processing.

It becomes obvious that the syntactic analysis must be

performed in such a manner so that right decisions are

consistently made without having to examine all of the high

probability options. Hence, a deterministic approach must

be used. At this point, the astute reader will realize that

an English parser based on a deterministic approach must be

used to solve this problem. It is a great boon to AFIT

speech recognition research that the only working

(properly) deterministic parser in the world is the Milne

English Parser.

The design of the SPEREXSYS incorporates all the

aforementioned requirements and is explained in the next

chapter.

41

4.. e .', *4 .. ' .. . ' . , .4.. . \ ,, -. .-.... "...".'......... .>•

. , - - -- : - . ' . "-. .. ' ' -'- . ' '-. ".- --. o'- - " - i' -

III. Design

The SPEREXSYS was designed using a top-down

hierarchical approach. The top level design was done using

data flow diagrams. The intermediate level design was done

using structure charts. And the low level design was done

using an abbreviated form of pseudo-code which led directly

to the actual coding of the SPEREXSYS.

Three programming languages -- C, Pascal, and LISP --

were considered as languages in which the SPEREXSYS would

be programmed. The C programming language was considered

because of its ability to assist in the problems of

connecting the three different computers together (the

voice decoder, the English parser, and the rest of the

SPEREXSYS all run on different computers). Pascal was

considered because its highly structured nature was

considered to be a valuable asset in both translating the

design into code and in the subsequent testing and

debugging of functionally isolated modules. LISP was

considered because of the facility with which it can

manipulate word strings. The decision to choose one of

these languages over the others was not made until the low

level design stage. During the pseudo-coding of the design

embodied in the structure charts, it became apparent that

the list processing capability of LISP was the most

important consideration in the timely design of the

SPEREXSYS. At this point Pascal was discarded as an option.

42

LISP was chosen as the primary language in which the

SPEREXSYS would be programmed and C was reserved until the

end as an option in which the I/O handlers between the

computers could be written if LISP proved inadequate for

the task. As it turned out, interfacing the computers was

an even more difficult task than originally expected. In

the end, all I/O and interface requirements were able to be

handled by Franz Lisp (the version of LISP which was used

for this program), but the decision to discard C as an

option was not made until final success was achieved in

satisfactorily interfacing the computers. The details of

how this was done are covered more completely in chapter

four and appendix C.

A. Top Level Design

The top level design specifies the major functional

modules and describes the primary data flows needed between

the modules.

In the data flow diagram of the entire speech system's

interrelation (figure 3.1), it can be seen that the

SPEREXSYS interfaces with the voice decoder, an output

device, and an input device. The speaker/user speaks into

the system input microphone. This uttered input is divided

into eight millisecond time slices and analyzed (as

previously outlined in chapter two). Eight milliseconds is

'- therefore defined as the basic unit of time. Time zero is

43

Figure 3.1. FLajor Components

43a

defined to be the beginning of the first eight millisecond

time slice of the utterred input. Time one is the beginning

of the second eight millisecond time slice, and so forth.

The SPEREXSYS solicits input to itself from the voice

decoder by sending to the voice decoder a list of next

. word-guess-requests (nextguesslist). Each word-guess-

request contains a string number, a time, and a set of

grammatical types. The string number is attached to the

voice decoder's output (wordguess) for the

word-guess-request and is the SPEREXSYS identification tag

for that particular sentence string (which, of course, is

still under construction). The time is the approximate

location of the beginning of the next word in the input

utterance. Specifically, it is the exact time at which the

previous word terminated. For the first word of the uttered

input, this time is zero. (Note - because of the overlap of

terminal and next- word-initial phonemes in connected

speech, the time parameter passed in the next-guess-request

• will sometimes mark a point which occurs after the

beginning of the next word for which the voice decoder will
search). The set of grammatical types specifies the

grammatical type constraints which the English parser has

placed on the next word to be guessed for that string.

These grammatical constraints serve to reduce the effective

vocabulary size which must be searched, and hence, improve

the reliability of the voice decoder.

In response to each next-guess-request (in

44

• , . .. • . q . o • .o. o . ,- . . .• ,.. .. •

nextguesslist), the voice decoder prepares a list of words

(wordguess) which fit both the time constraints and the

grammatical constraints and which are close enough matches

to the input utterance to be likely candidates for the next

* .word in the sentence string. The likelihood of each word

(the closeness of match) is annotated by the voice decoder

by an assignment of a probability of correctness to each

word. The time of each initial phoneme (referred to as timl

later) and of each terminal phoneme (referred to as tim2

a-" later) are also sent to the SPEREXSYS for all of the words.

This interchange of next-guess-requests and word

guesses between the SPEREXSYS and the voice decoder

continues iteratively until the SPEREXSYS is satisfied that

it has constructed the user intended sentence.

At this point, the SPEREXSYS verifies its results by

sending the decoded sentence to the output device (in this

case a CRT) and awaits user approval or disapproval of its

choice. If the user approves, then the decoding of the next

sentence begins where the approved sentence terminates. If

the user disapproves of the sentence, then the SPEREXSYS

sends the user the next most likely sentence. This

continues until the SPEREXSYS finds the right sentence or

gives up and asks the user to repeat the sentence with

particular care given to the consistent pronunciation of

the words which the SPEREXSYS improperly identified.

The data flow diagram which describes the top level

.*-design of the SPEREXSYS is drawn in figure 3.2. The data

a."

-.. . -.-. . ..- . - .. .-
, , ; : -.- .. -. . . - ... , - ' -. .* . i- o . / * . .

Uw

2.3AS

FPR-

4 5a

flow, as has already been explained, begins with the

English Parser Front End (EPFE) issuing a request to the

voice decoder for next word guesses (nextguess) for each of
the active word strings (an active string is a candidate

sentence under construction). The voice decoder responds

with a list of possible next words for each active string.

Each of these possible next words is filtered through

the short term memory. The short term memory is

functionally similar to the psychologically apparent

phenomenon of the short term memory in the HSRS. The short

term memory in the HSRS favors the interpretation of words

which have recently been spoken (in the current

conversation) if an ambiguity exists between a recently

spoken word and a word which approximately sounds the same.

An example which illustrates this phenomenon is presented

in appendix E.

If a %ord which has been recently spoken is one of the

words identified by the voice decoder as a possible next

word, then the probability of likelihood (assigned by the

voice decoder) for that word is increased in the short term

memory. The short term memory is updated with the list of

all words in a sentence as soon as that sentence receives

approval from the user. The short term memory is empty if

the sentence being recognized is the first sentence in a

conversation; and therefore, for the first sentence, no

word probability modifications occur in the short term

- memory.

46

The short-term-memory-modified-word-guess-list then is

input to the EPFE. In the EPFE (see figure 3.3) the word

probabilities are again modified to model a second

phenomenon of the HSRS -- this is the phenomenon of longer

words having preference over shorter words. The formulation

and experimental verification of this hypothesized

phenomenon is described in appendix F. The top few words

are chosen for each string and the others are discarded.

This abbreviated list of highest probability word

guesses is now sent to the start-new-strings module (see

figure 3.3) where a new string is started for each word in

wordguesslist. Each of these new strings consists of the

ancestor string augmented with the new word.

This list of new strings is now sent to the

kill-low-prob-strings (see figure 3.3) module which

calculates a likelihood of correctness probability for each

of the new strings and only keeps the top few most likely

ones.

These most likely strings'are now sent, one at a time,

to the English parser. The English parser analyses each

string and provides a list of possible next word grammar

types (epresponselist -- see figures 3.2 & 3.3). This list

of possible next word grammar types for each string is

examined for complete sentences by the formulate-

nextguesslist-from-epresponse module. If complete sentences

are found, they are reserved for later transmission to the

semantic analyzer (sentstringlist -- see figures 3.2,3.3 &

47

owN0

-47

3.4).

The strings in stringlist are started through the

entire cycle all over again by sending the list of possible

next word grammar types (in the manner which has been

previously explained) to the voice decoder (nextguesslist).

In spoken English, sentences are almost always

separated by a brief period of silence. The voice decoder
also looks for these periods of silence. When it finds one,

it passes *hat information to the English Parser Front End.

When one of these periods of silence (called an FPUNCT --

final punctuation, same as a sentential pause) coincides

with a point at which the English Parser has determined

that a string could legally be terminated as a complete

sentence, this condition is noted in the list of possible

sentences (sentstringlist) which the EPFE is storing for

later transmission to the Semantic Analyzer.

This continues until either the likelihood of all

strings under construction (calculated in the

kill-low-prob-strings module in figure 3.3) falls below a

user set acceptable threshold, or the voice decoder sends

only FPUNCTS (meaning that no further words exist in the

input utterance). (Note - the user set acceptable threshold

for the likelihood of string correctness is dynamically

modified by the semantic analyzer during the operation of

the SPEREXSYS to optimize speed and correctness).

The data flow design of the semantic analzyer is shown

in figure 3.4 . It is important to remember that the design

48

• , . . " .. ; " , , .- .- - , .- .- ,. -.- . , - * .-. . , - - - . . *.-, - -

.48

of a psychologically accurate semantic analyzer is beyond

the scope of this thesis research. This semantic analyzer

functions only as a crude shadow of the functions of the

various levels of semantic analysis in the HSRS to the

extent that they are understood at all.

At the initialization of the SPEREXSYS, the semantic

analyzer requests the user to select the cutoff threshold

for the likelihood of correctness of sentence strings, and

the number of words which will be accepted to form new

strings from each list of possible next words which the

voice decoder provides for each string. These and other

initialization parameters are passed to the EPFE.

When the EPFE returns the list of candidate sentences

to the Semantic Analyzer (sentstringlist), the Semantic

Analyzer rank orders each sentence in the list. With a few

W
exceptions, the list will be ordered first to favor the

sentences which had coincidental agreement on final

punctuation location by both the English parser and the

voice decoder, and second to favor longer sentences over

shorter ones.

The sentences are printed out to the user one at a

time beginning with the most probable. After each sentence

is output, the semantic analyzer waits for the user to

approve or disapprove its choice. If approved, the REINIT

module, reduces the margins of acceptable error, augments

the short term memory with the approved sentence, and

instructs the EPFE to begin looking for the next sentence

49

.

in the uttered input at the time the last sentence

terminated.

If the sentence is not approved by the user, the next

most probable sentence is output. This continues until

either the user approves a sentence or sentstringlist is

exhausted. When sentstringlist is exhausted and the user

still has not approved a sentence, this information is

passed to the REINIT module.

At this point, the REINIT module increases the margins

of acceptable error, asks the user to repeat his sentence

paying particular attention to the pronunciation of the

words which the SPEREXSYS failed to properly interpret, and

instructs the EPFE to try again.

-. s

g4 50

.

B. Intermediate Level Design

Structure charts were used to develop the intermediate

level design. The structure charts of the entire system

were initially drawn only to clarify the modular design.

This facilitated the coding of the high level design. Once

coding began, these structure charts were extensively

modified and expanded. This was due in large part to the

recursive nature of LISP. The structure charts presented

here are not the originals. The structure charts presented

here are those which accurately reflect the completed

design.

The entire SPEREXSYS system has been divided into

C eight major-function diagrams. The structural and

functional description of each of these eight diagrams,

along with the presentation of the rationale for the key

design decisions, is the purpose of this section.

The symbology and conventions used here differ from

standard structure chart practices in three major ways. All

three of these are because of the nature of LISP.

The first of these differences is that global

variables are not shown being passed between modules. It is

normally considered poor programming practice to have and

extensively use global variables (as this contributes to

poor coupling and cohesion). However, in order to take full

advantage of the recursive nature of LISP, global variables

were used extensively in this design. (No significant

51

problems were encountered during the debugging of the

system which could be attributed to the extensive use of

global variables!). Only local variables are shown being

passed between modules.

The second major difference is that diamonds are not

used to indicate decisions. Decisions as to module

selection occur for almost every module. (This can be

easily seen by examining the number of modules which begin

with "cond" statements). Again, this is due to the

recursive nature of LISP. It was thought that the use of

diamonds would unnecessarily clutter the diagrams making

them more difficult to read.

For similar reasons, iterative arrows were not used --

Gwhich is the third and final major difference between the

standard conventions and those used here.

Figure 3.5 displays the structure of the top levels of

the SPEREXSYS. The SPEREXSYS driver (module 0) first calls

the SPXSINIT (module 1) which introduces the user to the

SPEREXSYS and initializes the system. The driver then calls

SEMANALYZER (module 2). SEMANALYZER never returns control

to the driver. It is psychologically accurate to do so

since the semantic analysis levels represent the highest

levels of control in the HSRS. The short term memory module

(module 3) is never called by the system driver. It is

intended that its function be completely parallel to the

rest of the system as it constantly adjusts the

". probabilities of words at the word selection level in the

52

•.. . . .

--
71 -j

4--

..
Figure 3.5. Structure chart of SPEREXSYS

'
52a

• :'.". . , , ,r ',".','. -"-" "j - -" ' ' '."'"'." " "-" -. ,-".". .' ...i "-".". -.-.,. . ,, " .". '-"-"-"-"-" ,'-.

EPFE (modules 2.2.*). It is updated upon the positive

approval of the user of each decoded sentence. In this

system, this is the earliest that updating occurs (as

opposed to updating as words are decided within a sentence

prior to receiving the complete approval of the sentence).

Because of the lack of psychological data, this decision

was made to favor the most conservative approach; hence,

the short term memory is updated only when the system has

been assured by the user that a sentence has been properly

interpreted.

It can be easily shown that the short term memory in

the HSRS does function to increase the likelihood of

selecting a word which has recently been spoken (see

0 appendix E). No data are available on how much the

likelihood is increased. Because of this lack of data, it

was decided (based on intuition) to increase the voice

decoder assigned word probability one-third closer to 1. No

claim is made that this is accurate. This probability

increase can be easily changed as the equation for it was

set aside in a separate module (module 3.1).

The SEMANALYZER module first calls SEMANINIT (module

2.1) which asks the user to set the initial parameters

searchdepth and acceptthresh. searchdepth is the number of

words deep (the most probable word is at the top) the voice

decoder will have to go in order to guarantee (to some user

desired degree of reliability) that the correct word will
be found. The better the voice decoder is, the smaller

53

searchdepth will need to be. acceptthresh is the acceptance

threshold of the average probability of the last three

words in a string. If the average probability of the last

three words in a string ever drops below acceptthresh, the

string is discarded. The use of these terms will be

explained more fully later.

Once the initialization parameters have been set, EPFE

(module 2.2) is called. The EPFE will be explained more

fully later as it is the subject of the next seven

structure charts. The EPFE returns control to the

SEMANALYZER when it has arrived at a list of candidate

sentences.

The RANKSENTS module (module 2.3, Figure 3.5a) is then

called. RANKSENTS orders each of the sentences, which EPFE

returned, in decreasing order of the probability of

likelihood. Two factors are considered when rank ordering

these sentences. The first and most important factor is

whether or not a sentential pause occured in the uttered

input at the same point that the English parser determined

that the string was a complete sentence (as previously

*' discussed). Since this is almost a nonvariant phenomenon of

human speech (it occurs in all human languages), it is

given an overriding emphsis by adding the value of 1 to all

string probabilities in which it occurs (this is done in

MODFPUNCTS -- module 2.3.1.1). The probabilities for all

the words in each string are cummulatively added, along

with 100 if a sentential pause occurs, to become the

-59

~54

S.- . . . h*...

S;N

41)

_464

-..
7

sentence probability for each sentence. (Note- This

sentential pause, on rare occasion, does not occur at the

end of a sentence. Otherwise, sentences without it could be

discarded.). The cumulation of all word probabilities in a

sentence is the mechanism for favoring longer sentences

over shorter ones. The need to do this is illustruated by

the sentence:

The boat has nine oars on it.

The following strings are all complete sentences and would

be identified as such by the EPFE:

The boat has.

The boat has nine.

The boat has nine oars.

The boat has nine oars on.

The boat has nine oars on it.

The only way to preclude the premature termination of a

string is to favor longer sentences. A cursory examination

of English conversations reveals that this accurately

models the HSRS. If further words continue to make sense as

part of a previously completed sentence, then the sentence

is continued by augmenting those words.

The list of sentences, along with each sentence's

newly calculated likelihood of probability (done in

GETSTGPROBS), is sent to ORDERSENTLST (module 2.3.2) along

with the rank ordered list of all of the sentence's

probabilities (ranked in decreasing order in ORDERLIST).

ORDERSENTLST sends the highest sentence probability to

55

.-- \

TOPSENT (module 2.3.2.1) which returns the first sentence

in sentstlst which matches that probability. NEWSESLST

removes that sentence from the old sentstlst. This is so

that that any sentence with the same probability will not
.1

fail to be selected the next time. (The next probability in

problist will be the same as the last one in this case).

ORDERSENTLST reorders the list of sentences in decreasing

order in this manner. Note that if more than one sentence

has the same probability, then the one which appears first

in the original sentstlst will appear first in the new rank

ordered sentstlst. Without semantics, it is not possible to

distinguish between them in any way other than some

arbitrary selection such as this.

After the sentences have been rank ordered, PRINTSENT

(module 2.4) is called. PRINTSENT prints a banner to the

use, telling him that the top choice sentence follows.

OUTRESTSENT (module 2.4.1) then prints the sentence without

all the extraneous information such as word probabilities

and times, sentence string number, and sentence

probability.

The USERFDBK module (module 2.5) is then called which

solicits the user's approval or disapproval of the

sentence. If the user approves, REINIT (module 2.6) is

called. Otherwise, PRINTSENT is called and the next most

likely sentence is printed. If the list of sentences is

exhausted before the right one has been found, then REINIT

* e'. is called and passed this information.

56

REINIT reinitializes parameters for the next call to

the EPFE. If the last attempt to interpret the sentence was

successful, then searchdepth is decreased by one (unless it

is at two) and acceptthresh is increased by .02. Inittim,

the variable which tells the EPFE where to begin looking in

the input utterance for the next sentence is set to the

termination time of the last word (or FPUNCT) in the

approved sentence (done by GETTIMI). The approved sentence

is then sent to the short term memory.

If the user did not approve a sentence, acceptthresh

is arbitrarily decreased by .05 and searchdepth is

increased by two. (Note -- These are different values from

the success adjustments to keep the system from

ping-ponging back and forth between success and failure).

Inittim is left as it was for the last sentence and the

user is asked to repeat the sentence more carefully.

Control is passed back to the SEMANALYZER module and

EPFE is called again.

When the English Parser Front End is called (module

2.2, figure 3.6), the global variables for the EPFE are

initialized by calling GLOBAL (module 2.2.1). GLOBAL also

loads two dictionaries -- VOC.DICT and DICT.SPXS. VOC.DICT

defines the lists of legal and illegal features (grammar

types). DICT.SPXS defines the words in the vocabulary,

which are common to all parts of the system, by feature

types.

FORMNXGS (module 2.2.2) creates the list of next guess

57

3 #A
~C,

N * .~3t#A

A1w

Figure 3.6. Structure chart of' EPFL

57a

requests which will be sent to the voice decoder. This

process will be explained in more detail later.

Next the EPFE calls INTERFVOCDEC (module 2.2.3) which

functions as the communications interface between the EPFE

and the voice decoder. This module and its sub-modules (to

be described later) output the list of next guess requests

to the voice decoder and receive and format the voice

decoders response (wordguess) back to the EPFE.

DECTOPWDS (module 2.2.4) is called next by the EPFE in

order to choose the top most probable words among those

which the voice decoder sent to the EPFE. (This process

will be described in greater detail later).

These most probable words are each used to determine

Q new strings by concatenating each of them to the end of its

ancestor string. This is accomplished by the

START-NEW-STRINGS module (STARTNSTS -- module 2.2.5) and

will be explained more fully later.

In order to prevent the number of active strings from

becoming larger and larger (it would increase geometricaly

by the power of the value of searchdepth if not bounded),

the KILLOWSTS module (module 2.2.6) is called for the

purpose of selecting only the most probable strings. It is

this module which is responsible for accurately reflecting,

in the entire system, the deterministic nature of the

English Parser. This process will be elaborted on later.

To complete this cycle, ITEPREST (stands for:

Iteratively Sends English Parser Response Strings -- module

58

2.2.7) sends the active strings to the English Parser, one

at a time, and forms a list, by string number, of the legal

grammar types for the next word in each string. This list

is then sent to FORMNXGS and the entire process begins all

over again. The details of how this happens, as well as the

explanation of how this cycle terminates itself, will be

discussed later.

The FORMNXGS module and its sub-modules (figure 3.7)

perform the function of interpreting the English Parser's

response and translating it into a form which will be

understood by and useful to the voice decoder. If the

English Parser has identified any strings which cannot be

extended to form a grammatically correct sentence, it will

not identify any types for the next word. When this occurs,

the English Parser's response for that string is said to be

nil.

The KILNILSTS modules (modules 2.2.2.1.*) are

responsible for eliminating the strings from the active

string list when their corresponding English Parser

response (refered to in these modules as next2) is nil.

This is done by calling LOOKATNEXT2 (module 2.2.2.1.1) for

each next2. When LOOKATNEXT2 identifies that next2 is nil,

it calls the ELIM module (module 2.2.2.1.1.1) to have the

corresponding string eliminated from the active string list

and also to eliminate that particular next2 from the

English Parser response list.

When this has been accomplished for all the strings in

59

77

4.b

-i

101

.44

59

*~%

.-. 7

the English Parser response list (EPRESLST), the FPUNCTPROC

module (module 2.2.2.2) is called. FPUNCTPROC calls

EXAMNEXT2 (module 2.2.2.2.1) for each next2. Here each

next2 is examined to see if any of the legal next word

grammar types is an FPUNCT (final punctuation). When it

finds such an occurence (found in the CHECKFPUN module),

the ADDTOSESTLS module (module 2.2.2.2.1.2) is called which

adds that completed sentence to the sentence list being

built for transmission to the Semantic Analyzer.

After nil strings and FPUNCTS are taken care of,

MAKENXGSLST (module 2.2.2.3) is called. This module and its

sub-modules are responsible for the final formation of the

list of next word guess requests which will be sent to the

voice decoder. One at a time, the next2's are sent to

BUILDNXGS (module 2.2.2.3.1) where the grammatical types in

next2 are translated into the grammatical types which the

voice decoder will understand (done in modules 2.2.2.3.1.1

nd 2.2.2.3.1.1.1). This translation of next2 is now

referred to as next1. The time in the input utterance which

will be used as the approximate starting point for the next

word is found by getting the termination time of the last

word in the string (done in modules 2.2.2.3.1.2 and

2.2.2.3.1.2.1). The next guess request for that string is

then formed by concatenating the string number and the new

word starting time to the next1 for that string. This new

list constitutes the next guess request for that string and

*- is concatenated to the list of next guess requests.

60

Now that the EPFE is prepared to output its list of

next guess requests to the voice decoder, INTERFVOCDEC is

called. INTERFVOCDEC (module 2.2.3, figure 3.8) is

responsible for the interface between the EPFE and the

voice decoder.

Normaly, the way to proceed at this point would be to

simply print the list of next guess requests out the port

connected to the computer which the voice decoder is

running on. This could be accomplished with a single three

word LISP command. For reasons which will be only partially

discussed here and more fully discussed in chapter four,

this module was built to do considerably more processing

than simply outputting the list of next guess requests.

In order to analyze how effectively the English Parser

generated legal-next-grammatical-types were reducing the

vocabulary size which the voice decoder had to consider, a

list of all the vocabulary words (from the entire 200 word

vocabulary) was found and printed which met the constraints

imposed by the English Parser. When this was done, a

message was printed which told the user how many words were

in this reduced list. This allowed for continuing analysis

of how much the English Parser was improving the

reliability of the voice decoder (reference the previous

discussion on this subject).

The English Parser's feature list contains complicated

expressions of set unions, intersections, and compliments.
-...

"- An example of one of these complicated feature expressions

61
4.

Ps~IrtvORPOP7S INTEAFVOCOEC

t'I

2.2 .11.11 2Z.3f./:.z 22 3. 1.1 3

Figure 3.8. Structure chart of INTERFVOCDEC and sub-modules

6 1a

.-'. .7(which would be part of the epresponse) might be:

[noun or (verb and not (adj or adverb))].

This is to be interpreted as the set of words which are

nouns unioned with the set of words which are verbs -- but

* *the verbs cannot be either adjectives or adverbs (unless,

of course, they are nouns).

In order to interpret these complicated set

expressions and produce a set of words which conform to

these constraints, PROCFEATTERM (module 2.2.3.1.1.1) is

called which recursively disassembles each feature list and

transforms it into a legal set of words. In order for it to

accomplish this, union, intersection, and complimenting set

4 functions were written for its use (modules 2.2.3.1.1.1*).

After each epresponse (an element of the list of

English Parser responses) is processed and output, the

INTERFVOCDEC module waits for the voice decoder's response

(wdgs -- word guesses -- reference previous discussion on

this subject). As each voice decoder response is received,

it is concatenated on to the list of word guesses. This

continues until the entire list of next guess requests has

been processed.

The user has already informed the SPEREXSYS (at system

initialization) as to the maximum depth the voice decoder

will have to go to guarantee that the correct word has been

* . recognized. This value was assigned to the variable

"searchdepth." Therefore, it makes sense at this point to

trim all of the voice decoder's responses for each string

d 62

-6

to the top "searchdepth" probability words in order to

conserve processing resources (most importantly processing

time). Instead of just chopping the list off below the

third highest probability word, some modification of word

probabilities is done at this point which model the

psychological processes of the HSRS. As have been already

discussed, these are the phenomenons of increasing

likelihood of selection for both longer words and recently

spoken words.

The primary purpose of the DECTOPWDS module (module

2.2.4, figure 3.9) and its sub-modules is to accomplish the

above functions. In addition, if a sentential pause (refer

to previous discussion of this subject) has been sent by

the voice decoder, it is here that it is detected (done by

FINDFPUNCT -- module 2.2.4.1.1) and added to the end of the

appropriate sentence in the list of sentences being

reserved for later transmission to the semantic analyzer

(done in AUGSENSTG -- module 2.2.4.1.2). If no matching

sentence is found in that list, then the occurence of a..(.

sentential pause is ignored.

After this has been accomplished, the short term

memory reviews every word in the list. If it finds any that

have been spoken in recent past sentences (since the start

of the conversation), it increases their probabilities by

moving them one-third closer to 1.0. This equation is

arbitrary because of the lack of psychological data which

provides an accurate quantification of the probability

63
q.

44

Col

4.A.

.4..'t

.1C.-

44444 S. I Mt

ell m4

-. in

*1b
Nr

PA4

~"~BIT

4'...L.

4.'A

Fiue39 tutr hr o ETPD n u.oue

'*63a

increases.

" . After the short term memory modifies the probabilities

of any recently spoken words, the CHANGEPROB module (module

2.2.4.1.3) modifies the probabilities of each word based on

the following equation:

new prob = 112 (tim2 - timl)/(maxwordtim)(1 - old prob).

This equation was isolated from the rest of the CHANGEPROB

code by putting it in the CALCNEWPROB module (module

2.2.4.1.3.1) so that it can easily be changed. This was

thought to be necessary because it too is an arbitrary

specification of the increase of word probabilities because

of the lack of psychological data. The above equation

modifies word probabilities in only a very minor way, but

it is enough to prevent a word boundary from being

interpreted prematurely because of a part of the word also

being a very close match to the uttered input. For example,

it would prevent the word "ambiguous" from being

interpreted as the four words "am big you us."

GETPROBLST (module 2.2.4.1.4) now strips off the

probabilities of each word for a single voice decoder word

guess response and sends them to ORDERLIST (mod'le

2.2.4.1.5) whicii rank orders them in decreasing order.

FINDTOPWDS (modu'e 2.2.4.1.6) then gets the Nth element in

the list where N is the value of searchdepth. (Done in

".TOr'FUNCT through GETTOPWDS). This minimum acceptable

64

...................................

probability is sent to STRIPTOPN (module 2.2.4.1.6.2) along

with the list of words from the word guess voice decoder

response. STRIPTOPN discards all words with probabilities

* less than the minimum acceptable probability.

This procedure continues until each word guess

response has been processed.

Now that only the top searchdepth number of words are

still active for each string, this reduced list is sent to

STARTNSTS (module 2.2.5, figure 3.10) where the new strings

are formed.

In the event that this list is empty (which would

occur if the voice decoder only sent back FPUNCTS --

signaling that the end of the user's uttered input has been

reached), the EPFE will return control to the SEMANALYZER

module of the Semantic Analyzer.

STARTNSTS sends the entire stringlist (list of active

strings) to NEWSTRINGS (module 2.2.5.1) which sends one

string at a time to FINDWDSMATCH (module 2.2.5.1.1).

FINDWDSMATCH does two things. First it sends the string

number (of the string it is working on) to GETWORDS (module

2.2.5.1.1.1) which returns the top searchdepth words

corresponding to that string number, then it sends the

string and its new top next words to MAKESTS (module

2.2.5.1). MAKESTS makes new strings, one for each of the

top searchdepth next words, by appending the word to the

end of the string, giving that string a new unique string

number, and concatenating that string to a variable called

65

44.

4.1

44 ~ 2

44 4 .a ~ .. J ~ Z~A A.&~ ~ .~~..~ * -4 - .*. .. - - A 2 ~ n

OPTSTGLST. OPTSTGLST was set to the value of an empty list

before entering the STARTNSTS module. Before exiting the

STARTNSTS module, STRINGLIST is assigned the value of

OPTSTGLST. In this way, old strings (the ancestor strings

of the new strings) are all eliminated, and only their high

probability children are allowed to continue and compete

for survival in the KILLOWSTS module (module 2.2.6). But

before they are allowed to continue on to the KILLOWSTS

module, they are first sent to MAKEDECISION (module

2.2.5.2) where the user is informed of the list of third

words from the end of every string. In maintaining the

psychological accuracy of modeling the HSRS which the

English Parser provides through the use of its one word

lookahead theory. Because this one word lookahead relies on

the fact that there is no uncertainty as to the proper

identification of each word, and since this word

identification and word boundaries are not yet known with

only one word lookahead, it has been deemed appropriate to

use two word lookahead for the determination of those

strings which will continue to survive. Syntactic function

will continue to be assigned to guessed words based on a

one word lookahead. This compromise is expected to maintain

the psychological similarity of the HSRS while allowing for

the string to develop further before making a final

decision on the proper word in a given word place. It is

necessary to make a decision on which of these third words

back from the end of the active strings is really the

66

. t ¢. ,? i .:.% . " 4"..".." ... > ,. ...,. . ..- .,. . .o",.'... ... -.-. .. • . .-. .: -'. .- . '-, ..'..--'-

. .W

correct word.

"'." It is critical to an adequate understanding of this

thesis that the reader fully grasp why a decision is being

made now on the third word back from the end of all active

strings.

IT IS AT THIS POINT IN THE PROCESS THAT THE SEMANTIC

ANALYZER, WHICH WILL MAINTAIN THE UPPER LEVELS OF SEMANTIC

ANALYSIS, TO INCLUDE THE SEMANTIC NETWORK DESCRIBED IN

CHAPTER 5 AND APPENDIX D, WILL HAVE TO COMMENT ON THE WORD

SELECTION IN THE EPFE. Any semantic commenting about words

prior to their appearance as the third word from the end of

a string (with the exception of the last two words in a

complete sentence) is probably premature. The Parser cannot

- be reasonably confident that it understands the function

(grammatically) of a word until it is able to see the next

word. The semantic analyzer cannot comment on the

reasonableness of a word (based on its meaning) until it

understands the function of that word (i.e. -- whether it

is supposed to be a noun, or a verb, or an cdjective --

most nouns can function as either of these three).

Therefore, it follows that the semantic analyzer will not

normally be asked to comment on the likelihood of a word

until it is followed by at least one other word. But again,

because of word identification ambiguities, a more informed

decision can be made using a two word lookahead instead of

only the one word lookahead which Milne's theory dictates.

•. -..: Figure 3.11 illustrates the structure of the KILLOWSTS

67

4

imLosr

41r

1 ,l

2.~ 1. (P .22 j

FIgure 3.11. Structure chart of KILLOWSTS and sub-modules.

67a

module and its sub-modules. The number of active strings in

the system would increase geometrically by the power of the

value of searchdepth if they were not selectively deleted.

It is the responsibility of these modules to selectively

delete all but the top few most probable strings. In order

to do this, probabilities of likelihood must be assigned to

all strings.

It was initially decided that only the last three

words of each string should be considered in determining a

string's probability of likelihood. This was in order to

incorporate all of the psychological modeling of the HSRS

* which Milne demonstrated was attainable if the decisions on

word identities were made based only on the next two words

in the sentence. In order to do this, it was initially

envisioned that the EPFE should make a decision on the

third word back from the end of a string (all strings in

the system would be identical up to the fourth word back

from the end of the string). After further consideration of

this proposed constraint, it seemed unreasonable to force a

decision on the third word from the end of the sentence

only because that was the point at which the HSRS made

syntactic decisions. It became evident as this was

discussed that since the identity of a word requires

semantic (not only syntactic) judgement, and it was known

that not all semantic decisions were made on a word when

only the next two words were known, a design compromise was

made to calculate string probabilities based on all of the

68

'- ..- - -. ..- .'..i9._i -e-

words in a string, and then to choose the top n-squared

strings as the survivors. In connected speech, this does

not force a decision on the third word back from the end of

a string, but allows ambiguity of the third word back from

the end of the string if the cummulated probabilities of

all the words in a string are high enough to compete with

the other survivor strings. Note that for separated word

speech, where the word boundaries are known, this would

still force the decision to make the third word back from

the end of all active strings identical. Tree search

diagrams were used to prove this conclusion.

Further, it was decided that when the cummulative

probabilities of the last three words of any string were

less than the minumum acceptable threshold (acceptthresh),

that the string would no longer be considered.

The CHOPTOMNS module (module 2.2.6.1) is responsible

for eliminating all but the top searchdepth-squared highest

probability strings. GETSTGPROBS (module 2.2.6.1.1)

calculates string probabilities (done in CALCSTGPROB), and

then makes a list of these probabilities (done in STGPROB).

This list is sent to ORDERLIST (module 2.2.4.1.5) to be

ordered in decreasing order. This ordered list is then sent

to GETTOPSTS (module 2.2.6.1.2) which returns only the top

searchdepth-squared strings.

These top strings are then sent to ELIMMINACC (module

2.2.6.2) where the probabilities for the last three words

are calculated (done in OVERMIN) and compared with

69

acceptthresh (done in CHECKMINPR). Those which do not pass

this test, are eliminated from further consideration.

If no strings have survived to this point (are still

-IIactive) then the EPFE returns the list of accumulated,

complete sentences to the Semantic Analyzer and control is

passed back to SEMANALYZER.

Those strings which do survive, are sent to the

English Parser by ITEPREST and its sub-modules (Figure

3.12). ITEPREST pulls one complete string at a time off the

list of active strings and sends it to INTERFEP (module

2.2.7.1). INTERFEP functions as a driver for its

sub-modules. First, STGPRINT (module 2.2.7.1.1) forms each

string into a command which the Parser can understand and

outputs that command to both the Parser and the user's

terminal. Second, STGPRINT reads the English Parser's

response and concatenates it, with the appropriate string

number, to the new list of English Parser responses

(epreslst).

This new list of English Parser responses is sent to

the FORMNXGS module and the entire cycle is started again.

70

-- 4 2.2.71

*INTFRFEP
ITERST

2.2.7.1 2.27
TER

STGP)INT oQEC

2.Z. 7. 1.1 It.71

II 11 A#A

Figre .12.Srucur chr oVTPRS ndsbmou4

-70a

C. Low Level Design

The low level design of the SPEREXSYS was done with

pseudo-code. Standard pseudo-code is pascal-like in its

structure and terminology. LISP does not look much like

PASCAL in either instruction function or in structure. Once

LISP was chosen as the language in which the SPEREXSYS was

to be written, very unconventional pseudo-code was the

result. It was, at best, an informal system for annotating

how the functions were to be structured and coded. In the

end, it was useful for assisting in the coding of about

half the modules. The others, especially the interface and

the lowest level recursive modules, were written as their

need became apparent. The original pseudo-code was not

modified first. This was largely do to the growing

realization (LISP was a very new language to this

researcher at the outset of this project and only a very

shallow understanding o" how to properly use it had been

achieved) that the structural thinking processes which take

full advantage of the recursive power of LISP are not

easily described in pascal-like pseudo-code.

For these reasons, it has been decided that the

commented listing (appendix A), the data descriptions in

the data dictionary (appendix G), and the preceding

intermediate level design narrative would be sufficient to

describe the low level design of the SPEREXSYS.

71

- IF A A "le - - " - .-: ,' .N-' - . -' . . . -" . ' . - ' . i - .. ' . . . ' . ' . .

W. .Y ~ 7.7 -. Y. .- 2 - -

IV. Implementation, Testing, and Validation

This chapter is devoted to explaining the specifics of

the operation and results of the SPEREXSYS. When reading

the section on the implementation of the SPEREXSYS (section

A), it will be useful to also reference appendix C which is

a short user's manual on how to set up and operate the

SPEREXSYS.

Appendix B is an example run on the SPEREXSYS

attempting to recognize the sentence: "The peak got snow."

It will be useful to reference this appendix in order to

better understand the discussion in section B on testing

and validation.

A. Implementation

The first and most important item of discussion in the

implementation of the SPEREXSYS is that the Voice Decoder
J.

was not finished in time for integration into the system.

This necessitated the simulation of the Voice Decoder's

operation by a semiautomated process under human user

control. This did not significantly impact the testing of

the SPEREXSYS since the SPEREXSYS was designed to treat the

Voice Decoder as a black box with a very limited and

strictly defined data transfer between the SPEREXSYS and

the Voice Decoder. Any kind of voice decoder (isolated or

connected word, small or large vocabulary, any type of

72--]V

feature set extraction, any bit rate, any kind of word

recognition scheme) could be used as long as it has the

following attributes:

1. It can remember the input utterance.

2. It can determine the acoustic likelihood of

match of words in the vocabulary which might

be the next word in the input string beginning

at or around some specified time in the input

utterance.

3. It can identify the start and stop times of

every word which it determines to be a likely

match.

It was therefore decided to use the acoustic analyzer of

the HSRS as the black box voice decoder since nothing else

was ready for integration. It should be noted that the HSRS

voice decoder which was used purposely made misjudgements

as to word identification likelihoods in order to test the

flexibility and responsiveness of the SPEREXSYS. These are

specifically described in section B of this chapter.

In order to assist the human user in making the

appropriate voice decoder decisions, the process of word

selection was semi-automated by printing out only those

words of the vocabulary which meet the grammatical

restrictions which the English Parser placed on the next

-.> word to be guessed for each active string. This insured

73

that the human voice decoder would only pick next words

which were grammatically acceptable.

The output from the SPEREXSYS to the Voice Decoder was

sent to the C.R.T. of the SPEREXSYS user's terminal in

order to be able to keep a script (log) of all the data

exchanges. For the same reason the input to the SPEREXSYS

from the Voice Decoder was input at the keyboard of the

SPEREXSYS user's terminal.

The interface between the VAX computer in the AFIT/EN

building (on which the EPFE and semantic analyzer ran) and

the DEC-10 computer in the Avionics laboratory building (on

which the English Parser ran) was a little more complicated

and difficult.

It required the use of at least four terminals and

four modems. On occasion, up to seven terminals (with

modems) were used. The additional three were helpful in the

tasks of line control (between the VAX and the DEC-10) and

systems information management. Only the function of the

four essential terminals (and their modems) will be

described here. Also, a special RS-232 cable was

constructed which crossed the wires between pins #2 (RxD)

and #3 (TxD) on the connectors for both ends of the cable

and connected the #7 (GND) pins of both connectors

together.

For the purposes of this description, the four

terminals which were used will be referred to as :

' - TTY11 -- set to 300 baud with telephone modem,

74

,,-",-'--

7 DA136 835 A SPOKEN ENGLISH RECOGNITION
EXPERT SYSTEM(U) AIR FORCE

2/3
INST OF TECH NRIGHT-PflTTERSON HFBF OH SCHOOL OF
ENGINEERING R L ROUTH SEP 83 RFIT/OCS/EE/83S-01

pUNCLAhSSIFIED F/6 9/2 N

r

*" 4

L3.

*1u

IWOI

- 4'°

11111.2 113 _4 111L

L.. .--.-

MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU OF STANDARDS- 1963-A
,'

111111.25 1111 .4 1.

II,,'" " - ___,___

'-a

!"/

a,'.",_,""'"''. . -.. .-. ", .,'""'"",''''- ,"."" ,." '.--'"- ,- ., -"-","""-. . ,- -,' ," ,'", ,L.,

TTY12 -- set to 300 baud with Gandalf modem,

TTY13 set to 9600 baud with Gandalf modem, and

TTY14 -- set to 9600 baud with Gandalf modem.

All four terminals were located in the terminals room (room

125) of the AFIT/EN building (buildling 640). All of the

Gandalf modems were connected to the VAX on which the EPFE

and Semantic Analyzer ran.

TTYl1 was used to call into the DEC-10 computer and

initialize the Parser for operation. In addition, it was

necessary to turn off the echo of the input in order to

keep from sending the input back out the output channel

(reference the RS-232 special cable connection below).

TTY13 was brought up and left in the UNIX C-shell.

This terminal was used as a dummy input terminal for TTY12.

TTY12 was brought up. Its protocols were switched to

the DEC-10 protocols. Its echo was then set to off for the

same reason as outlined for TTY11 above. The LISP

interpreter was entered and the command:

(setq piport (infile '/dev/ttyl3)) <cr>

was issued so that the shell which monitored this

terminal's input would not interfere with the input that

was coming from the DEC-10. The cables connecting the TTY11

and TTY12 terminals to their respective modems were

unplugged from the modem side. The special RS-232 cable was

then used to connect the modems for these two terminals

75

p

together.

Finally, the EPFE and Semantic Analyzer portions of

the SPEREXSYS were brought up with the "(load 'spxs)" LISP

command on TTY14 which then functioned as the SPEREXSYS

user's terminal.

The last thing to be done to complete the preparation

of the entire implementation of the system was to send a

carriage return to TTY12. (This was done using a LISP

command during SPEREXSYS intialization. The carriage return

of course did not go to TTY12. It went to the output line

of the TTY12 modem which then went into the DEC-10 through

the input line of the TTY11 modem). This had the effect of

loading a vertical bar into the input buffer for the TTY12

omodem to access. This was necessary to properly synchronize

the EPFE and English Parser I/O channels because the EPFE

is programmed to ignore everything up to the first vertical

bar in the TTY12's input buffer (when it talks to the

English Parser).

Whenever the EPFE now wants to talk to the English

Parser, it uses LISP commands to set its input and output

ports to TTYl2. When it wants to talk to the SPEREXSYS

user s terminal, it resets them to TTY14.

A more detailed set-up procedure is described in the

user s manual in appendix C.

76

B. Testing and Validation

Since the primary purpose of the SPEREXSYS was to

reduce ambiguity in the Voice Decoder's output, the testing

philosophy was to carefully choose test cases which helped

to measure the reduction of ambiguity due to imposing the

constraint that all voice decoder output must form

grammatically correct sentences.

In order to assist in this task, the 200 words which

comprise the SPEREXSYS vocabulary were chosen so as to

maximize ambiguity. For example, the words "two", " t o o", and

"to" were included because they sound identical even though

they have completely different syntactic and semantic

0functions. Also, the words "peak" and "peek" (and "peaking"

and "peeking") were chosen because they sound identical and

have identical syntactic definitions. They can only be

distinguished at the semantic level. Some of the words in

the chosen vocabulary are fairly uncommon but were chosen

because they sound quite similar to other more common

words. The words "eunichs" and "units" are an example of

this.

If a vocabulary had been chosen to reflect a set of

words which have more common usage, there would be less

ambiguity. It was therefore thought that the problems which

would occur due to a vocabulary of a size significantly

larger than 200 words could be simulated by choosing a set

of 200 words with an uncommonly frequent degree of

77

.

ambiguity.

Two levels of testing were required. The first was to

verify that the program code functioned as anticipated

(i.e. - to insure that there were no coding bugs). This

testing was accomplished for the most part by the dynamic

path testing of modules as each major functional area was

written. This level of testing is not significant to the

evaluation of the SPEREXSYS design and, for that reason,

will not be discussed here.

The second level of testing was to evalute the

SPEREXSYS design. This level of testing was concerned with

answering such questions as:

1. How well does the SPEREXSYS handle identical

sounding word ambiguities?

2. How does the SPEREXSYS respond when the

correct word is not the highest probability

word?

3. How much do changes in the search depth and

acceptance threshold parameters affect the

performance of the system?

4. How well does the SPEREXSYS find the end of

sentences when the speaker is uttering

consecutive sentences without stopping?

5. How effective is the SPEREXSYS at assisting

the voice decoder to find correct word

boundaries in connected speech?

78

P- PH

6. How effective is the short term memory?

Rules of Testing

The test sentence was first diagrammed by dividiing it

into phonemes on a time scale. The sentence "The peak got

snow," is so diagrammed in this example:
PAI,

(0) TH (5) E (15) P (20) EA (30) KG (35) 0 (45) T (50) S

(55) N (60) 0 (70) FPUNCT (100).

The numbers in parentheses are Seelandt clock times. They

mark the times of phoneme transition. The consonant

phonemes are assigned a duration of five Seelandt time

units. The vowel phonemes are assigned a duration of ten

Seelandt time units. This was an arbitrary assignment

scheme and is not significant other than it is a rough

approximation of actual phoneme durations in normal speech.

When it was possible to combine the terminal phoneme of one

word with the initial phoneme of another word, it was done.

For example, "peak" and "got" above, both share a common

phoneme that sounds like the letter "g."

When the Voice Decoder is given the approximate time

of the start of a next word, it may look back at most only

one phoneme to begin looking for the start of the next

word. The one exception to this is when the previous two

• .phonemes were "s" and "t" such as at the end of the words

79
S.t

'1 ,-..'"- .. ,.". ' " -" "-",' " """ '""" ''' . ' -''''''' - - . .-, " " - " " " - -"- - " " ' ,

: ,- - . ., .- .- ,, , -- . : .
-

. _ . ,.
-

.. . • ,.-. . . - T . .. - -. .o .

"mast" or "missed." For example, when the words "missed

stair" are pronounced in connected speech the "st" sounds

may occur only once and be shared by both words.

When it was possible to insert bogus phonemes, they

were inserted. An example of this is the pronunciation of

the two words "go on." "Go" does not end with a "w" sound

and "on" does not begin with a "w" sound, but when the two

words are spoken together, a "w" sound occurs in the

transition between the "o" in "go" and the "o" in "on."t

The last rule is that no phonemes can be ignored from

the start-word time given by the EPFE and the actual start

of the word used by the voice decoder (with the exception

of periods of silence - - FPUNCTS).

Test Number One

Purpose of Test: The purposes of this test are to

examine the ability of the SPEREXSYS to:

1. Interpret a short single sentence.

2. Find word boundaries even when the boundary is

a shared phoneme.

3. Respond accurately even when a wrong word is

entered with a higher probability of

likelihood than the correct word.

4. Distinguish between words with identical sound

*. ":-" and identical syntactic definitions.

80

Test Specification: The sentence, "The peak got snow,"

will be input. The terminal phoneme of "peak"

and the initial phoneme of "got" will be a

shared "g" sound. The words "peak" and "peek"

will both be entered with identical

probabilities of likelihood for the word

1"peak." The word "no" will be entered with a

higher probability of likelihood than the word

"snow" for the last word in the sentence.

Acceptthresh and searchdepth will be entered

as .75 and 2 respectively.

Input Utterance: (0) TH (5) E (15) P (20) EA (30) G

(35) 0 (45) T (50) S (55) N (60) 0 (70) FPUNCT

(100).

Test Observations: The test observations are included

in their entirety in appendix C.

Test Results and Conclusions:

1. The SPEREXSYS was able to properly interpret

this sentence on the first attempt even

with the ambiguities.

2. For this example, the SPEREXSYS was able to

find the word boundaries between all four

81

..'-VV..-.....-....-.."...".....,.---,'-.
• , ' ." - • • " ' ,' , ", ". . ". "o ". " " . ,- , . . . - '- - . " • " - , "

. . words in the sentence even though the Voice

Decoder was unable to do so.

3. Because of the syntactic constraint that

does not allow the four words, "The peak

got no," to be a complete sentence, the

fact that the word "no" was entered with a

higher probability of likelihood than the

correct word "snow" did not cause the

SPEREXSYS to fail to find the proper

sentence as its first choice. Similar

successful results would not be expected if

d a wrong word was given a higher probabiltiy

of likelihood by the Voice Decoder if it

0fit syntactically into the sentence.

4. The Voice Decoder was unable to distinguish

between the two nouns "peek" and "peak."

The SPEREXSYS was unable to help in this

ambiguity. This was expected because

semantic information is necessary to make

this decision. Acoustics and syntax are

insufficient to make the proper distinction

between the two words. The reason "The peak

got snow" was output before "The peek got

snow" was due only to the fact that "peak"

was entered before "peek."

- Test Number Two

82

k .. ;7 . . !. .. -
.

-. -.... . -

Purpose of Test: The purposes of this test are to

examine the ability of the SPEREXSYS to:

i. Find the end of sentences when the speaker

is uttering consecutive sentences without

stopping. (To make this test particularly

difficult, no sentential pause will be

inserted between the sentences).

2. Respond to improperly interpreted sentences.

3. Demonstrate improved performance with the

use of the short term memory.

oTest Specification: This test will be administered in

three parts:

Part I: Input the sentence , "Your error was wrong."

The word "air" will have h-igher probability of likelihood

than the word "error."

Part II: The sentence is expected to fail the first

time through the SPEREXSYS for reasons outlined in part 3

of the "Results and Conclusions" to test number one.

Simulate a better pronunciation of the word "error" the

second time through by giving it a higher probability of

likelihood than "air." All other inputs will remain

i '.' identical to the first test.

83

Part III: Properly input the sentence, "Their error

was right," by inputting only the correct words each with a

probability of likelihood of 90%. After the word "right" is

entered, input the sentence in part I ("Your error was

wrong.") without inputting an FPUNCT (sentential pause)

after the word "right" in the first sentence. (This gets

the word "error" in the short term memory.) The sentence,

"Your error was wrong," should be entered exactly as it was

the first time in part I (only the times will be shifted so

that it will start after the word "right" in the first

sentence). Acceptthresh and searchdepth should be set at

.75 and 2 respectively for all parts of this test.

Input Utterances:

Part I: (0) Y (5) 0 (15) R (20) E (30) R (35) W (40) A

(50) Z (55) R (60) 0 (70) N (75) G (80) FPUNCT (110).

Part II: (0) Y (5) 0 (15) R (20) E (30) R (35) 0 (45)

R (50) W (55) A (65) Z (70) R (75) 0 (85) N (90) G (95)

FPUNCT (125).

Part 1II: (0) TH (5) E (15) R (20) E (30) R (35) W

(40) A (50) Z (55) R (60) 0 (70) E (80) T (85) Y (90) 0

(100) R (105) E (115) R (120) W (125) A (135) Z (140) R

-~ V
(145) 0 (155) N (160) G (165) FPUNCT (195).

Test Observations:

. -, 1. The SPEREXSYS failed to recognize the

84

sentence in part I

5..

2. The SPEREXSYS properly recognized the

sentence on the first attempt in part II.

3. The SPEREXSYS properly recognized the

sentence on the first attempt in part III.

Test Results and Conclusions:

1. The sentence, "Your error was wrong," fai

as expected the first time through because

"air" was thought to be the correct word by

the SPEREXSYS. Note that even perfect

semantics at the sentence level would not

have helped to find the correct word since

the sentence, "Your air was wrong," is a

sentence which is semantically correct all

by itself. Semantics at a conversational

level would be needed to determine which

word made more sense within the scope of

the conversation.

* 2. The first sentence was properly interpreted,

as would have been expected, after the user

followed the instructions of the SPEREXSYS

to pronounce the word more clearly the

second time.

3. In part III of this test, the end of the

* -. sentence was found after the next 2 words

85

- ' ' + - g ;.:-:,:,i-- ,: . :-.-'- %.-',-.- '..:-.. '.':, , '. ';..-:-2.1..'...-'.-'.:.

had been looked at. It would have been

discovered by looking at only the next word

if acceptthresh had been set to anything

between .83 and .9. If acceptthresh had

been very low (around .2), it may have been

that the end of the first sentence would

not have been found. This leads to the

conclusion that acceptthresh should be set

as high as possible without eliminating the

correct words.

4. The use of the short term memory, in part

III, prevented the occurrence of the

misinterpretation which happened in part I

of this test.

Test Number Three

Purpose of Test: The purposes of this test are to

examine the ability of the SPEREXSYS to:

1. Distinguish between long and short words

with the same probabilities for the next

word in the string.

2. Properly interpret paragraphs constructed

out of long sentences uttered without

stopping at the end of each sentence to

insure the SPEREXSYS properly interpreted

". ' it.

86

II4

Test Specification: The following paragraph will be

uttered into the (simulated) Voice Decoder:

The Airforce general was speaking to his

staff about some recent C3 issues. He told

us that there was nothing ambiguous about

the intelligence report. The Army MI people

and our own intel folks all agree. The

enemy is running short on ammunition. We

must have the communications to get this

information out to all our units.

If the SPEREXSYS allows it, the words "Air Force" will be

used as equal probability candidates for the word

.

"Airforce." Similarly, the following sets will be used as

equal probability candidates for the correct word

sea cubed -- C3

see cubed -- C3

itch ewes us issues

am big you us -- ambiguous

reap port -- report

arm me army

These are only a few of the equal probability and near

equal probability words which are to be entered along with

the correct words. Acceptthresh and searchdepth will be set

to .75 and 2 respectively.

87

se .u e -C

Input Utterances: (0) TH (5) E (15) E (25) R (30) F

(35) 0 (45) R (50) S (55) G (60) E (70) N (75) R (80) A

(90) L (95) W (100) A (110) Z (115) P (120) E (130) K (135)

E (145) N (150) G (155) T (160) 0 (170) H (175) I (185) Z

(190) T (195) A (205) F (210) A (220) B (225) OU (235) T

(240) S (245) 0 (255) M (260) R (265) E (275) C (280) E

(290) N (295) T (300) FPUNCT (330) C (335) K (340) U (350)

B (355) D (360) I (370) SH (375) U (385) Z (390) FPUNCT

(420) H (425) E (435) T (440) 0 (450) L (455) D (460) U

(470) S (475) TH (480) E (490) R (495) W (500) A (510) Z

(515) N (520) 0 (530) TH (535) E (545) N (550) G (555) A

(565) M (570) B (575) I (585) G (590) Y (600) U (610) W
..°

(615) U (625) S (630) A (640) B (645) OU (655) T (660) TH

(665) E (675) I (685) N (690) T (695) E (705) L (710) I

(720) G (725) E (735) N (740) S (745) R (750) E (760) P

(765) 0 (775) R (780) T (785) FPUNCT (815) TH (820) E (830)

0 (840) R (845) M (850) E (860) E (870) M (875) 0 (885) E

(895) P (900) E (910) P (915) U (925) L (930) A (940) N

(945) D (950) 0 (960) R (965) 0 (975) N (980) I (990) N

(995) T '1000) E (1010) L (1015) F (1020) 0 (1030) K (1035)

S (1040) 0 (1050) L (1055) A (1065) G (1070) R (1075) E

(1085) FPUNCT (1115) TH (1120) E (1130) Y (1135) E (1145) N

(1150) E (1160) M (1165) E (1175) I (1185) Z (1190) R

. (1195) U (1205) N (1210) E (1220) N (1225) G (1230) SH

(1235) 0 (1245) R (1250) T (1255) 0 (1265) N (1270) A

(1280) M (1285) Y (1295) U (1305) N (1310) I (1320) SH

• (1325) U (1335) N (1340) FPUNCT (1370) W (1375) E (1385) M

88

(1390) U (1400) S (1405) T (1410) FPUNCT (1440) H (1445) A

(1455) V (1460) TH (1465) E (1475) C (1480) 0 (1490) M

(1495) Y (1505) u(1515) N (1520) ' (1530) C (1535) A

(1545) S (1550) U (1560) N (1565) Z (1570) T (1575) U

(1585) G (1590) E (1600) T (1605) TH (1610) I (1620) S

(1625) I (1635) N (1640) F (1645) 0 (1655) R (1660) M

(1665) A -(1675) SH (1680) U (1690) N (1695) OU (1705) T

(1710) U (1720) W (1725) 0 (1735) L (1740) 0 (1750) R

(1755) Y (1760) U (1770) N (1775) I (1785) T (1790) S

(1795) FPUNCT (1825).

Test Observations:

1. When the correct word was not the word with

the highest likelihood for any word other

than one of the last three words in the

sentence, then the SPEREXSYS failed to

properly interpret the sentence on the

first attempt.

2. Eventually (see appendix B), all of the

sentences in this paragraph were properly

interpreted.

Test Results and Conclusions:

1. The introduction of the similar sounding

word sets (prescribed in the Test

Specification above) did not cause the

SPEREXSYS to fail to properly identify the

89

- . . * .** -
-" , . ., .-. '* . *.. " . - .- '-.* - , -. - .- - - , '* - , -• . " . , L . . _ - , . . '

- ' ,.. .. . :. , . , . , . , . .-. a , -. . -. - .- * - " - -- - -

correct sentences. In some instances, (i.e.

the substitution of all four words "am

big you us" for "ambiguous" was not allowed

due to syntactic constraint).

2. Essentially, the SPEREXSYS is making a

decision on the third word back from the

end of all strings. This is (by design) the

nature of the deterministic decision making

process in the SPEREXSYS. Semantic analysis

during string construction is not yet

employed in the SPEREXSYS. Acoustics and

syntax are sometimes insufficient to find

the correct identity of this third word

back from the end of all strings. The

result is that if the correct third word
4,.

back does not have the highest word

likelihood probability by the time it has

been run through the short term memory and

the longer word preference modules, it will

be rejected. When this happens, the only

recourse left to the SPEREXSYS is to ask

the user to repeat the sentence and hope

for better results on the next attempt.

This inconvenience emphasizes the need for

.i" *.semantic analysis which has the effect of

boosting the word probability of the

"8 correct word above all other word

90

J.°°.° ° . .A

probabilities. This must be done during the

MAKEDECISION module function in the

SPEREXSYS (i.e. - before the third words

back go into the module to kill low

probability strings).

J9.

p .

4

.4..

..

911

* "-C

771.7

V. Summary, Conclusions, and Recommendations

Subject to the accuracy of the acoustic analyzer and

the accuracy and completeness of the English Parser, a near

real time general solution to the application of syntactic

constraints to spoken English recognition has been

developed. This solution is functionally equivalent, in

many ways, to the syntax processing of spoken English in

the human brain. Because it closely models the syntax

processing of the Human Speech Recognition System (HSRS),

it would be most effective when used with the several

levels of semantic analysis which are also evidently

operational in the HSRS. Hence, it is a necessary part of

the eventual general solution to the English speech

recognition problem.

A. Summary and Conclusions

The purpose of this thesis was to find and develop a

way to interface the Milne English Parser with the AFIT

Voice Decoder so that the accuracy of the Voice Decoder

would be improved by the additional constraint of requiring

its output to form grammatically (syntactically) correct

English sentences. It was thought that by so constraining

the output of the Voice Decoder that additional information

would be provided to help resolve Voice Decoder ambiguities

e jS such as finding word boundaries in connected speech and

92

9 . -- . % , ...-.- ,. -.- .-.-- ' ' -.-. " - ' ' .•,-. .-.-. " '.--•--• --- -- - ' '

,, , , -- ~ oo • , ' " -" , o "% .-. -. - . j , ". . .-.".- ' - - j -" '.92 "

choosing between identical sounding words (such as "to",

"too" and "two"). These ambiguities exist in that there is

insufficient information in the acoustic data alone to

resolve them. In addition, it was hoped that the

application of these syntactic constraints might prove

useful in the process of distinguishing between

approximately likely options available to the Voice Decoder

during its final decision making of the analysis of the

input utterance. Contingent on the successful development

of a solution to the above stated requirements, this thesis

was to measure the degree of success achieved in each of

the aforementioned requirements. In accomplishing all of

these, it was desirable to investigate and develop a Voice

Decoder - English Parser interface which functions

similarly to the same acoustic analyzer - syntactic

analyzer interface in the Human Speech Recognition System

(HSRS).

All of this was accomplished. Some of the qualitative

* specifics of these accomplishments are discussed below:

1. The solution to this problem for the most part

addresses the syntax aspects of the spoken English

recognition problem. It includes some crude semantic

analysis to help resolve some ambiguities left unresolved

by the syntactic analysis. The solution is called the

Spoken English Recognition Expert System (SPEREXSYS). Aside

from the human interface aspects of operation (which were

93

due to implementation constraints) it is a near real time

solution. It can be easily implemented as a real time

solution by upgrading the hardware and communications with

existing technology.

2. The SPEREXSYS was designed and developed to black

box the type of acoustic analyzer (voice decoder) which is

used. In other words, the SPEREXSYS operates independently

from the type and design of the voice decoder (the voice

decoder can be isolated or connected word, small or large

vocabulary, any type of feature set extraction, any bit

rate, any kind of word recognition scheme) as long as the

voice decoder has the following attributes:

a. It can remember the input utterance.

jt b. It can determine the acoustic likelikhood of

match of words in the vocabulary which might

be the next word in the input string

beginning at or around some specified time

in the input utterance.

c. It can determine the start and stop times of

every word which it determines to be a

likely match.

3. It has been demonstrated that the solution to the

.. problem of syntactically constraining acoustically analyzed

speech must be deterministic in nature (meaning that it

makes decisions one word at a time from left to right

' ; N~i; .- ; :. 4N-: N-;,:'i .".:':i...-..-..,.-..-... ..-.-... •. ,..

without ever backtracking and with limited lookahead) in

both electronic computers and the human brain. The

SPEREXSYS is able to function psychologically equivalent to

the syntactic analysis processing of the human brain. It

also predicts the point at which semantic constraints

should be introduced in order to maintain psychological

compatibility with the semantic processes in the human

brain. This was done by using the one buffer lookahead

theory developed by Milne (Ref 17). It was decided to rely

on the one buffer lookahead technique in order to assign

syntactic functions to each word being considered, but that

because of the increased confusion in speech (compared to

written English) as to the location of word boundaries, it

was decided to allow two buffers of lookahead before

allowing for semantics to be introduced. This was thought

to improve the probability of finding the right word before

making a final decision as to the selection of a word based

on semantics. It was also demonstrated that this final word

selection (from the high probability options) must be made

on the basis of semantics. In the SPEREXSYS, the final word

selection should occur at the third word back from the end

of a string under construction and also for the last two

words in a sentence.

4. The SPEREXSYS incorporated functions which

simulated the psychological functions (in the HSRS) of

short term memory and longer word preference. More

S experimentation with the HSRS needs to be done in order to

1, 95

more accurately describe (and apply in the SPEREXSYS) these

functions.

5. The SPEREXSYS can find word boundaries, which the

voice decoder cannot find, even when it is a shared phoneme

(or set of phonemes) as long as the acoustic analyzer

(voice decoder) is accurate enough to provide the right

answer as one of the top few options and the English syntax

is sufficient to resolve the ambiguities. Syntax was

sufficient in most cases (during the testing of the

SPEREXSYS), but in many others, semantics was necessary to

resolve word boundary ambiguities.

6. The SPEREXSYS can distinguish between identically

sounding words as long as the words have different

syntactic functions. More specifically, the homonymns and

crossonyms (identical sounding strings of phonemes) which

are eliminated must form syntactically illegal or

improbable strings. Semantics is required to distinguish

between homonymns which have identical syntactic functions.

7. In the instances where the correct word was not

identified as the most likely word by the voice decoder,

the SPEREXSYS was able to choose the correct word if the

words which were identified by the voice decoder as more

likely words either did not fit syntactically in the

sentence or led to improbable string constructions. This

decision was much more likely to be made correctly if the

voice decoder mistake was made within the last three words

of a sentence (because syntactic constraints are much more

96

strict within the last three words of a sentence).

""" 8. When the SPEREXSYS fails to properly interpret a

sentence in its first attempt, it will output its best

guess (sentence) and ask the user to repeat the sentence

paying particular attention to the pronunciation of the

words which were improperly interpretted the first time.

The second attempt is usually more successful than the

first.

9. The SPEREXSYS is able to properly interpret several

sentences which are uttered in continuum without the user

having to stop in between sentences to insure that the last

sentence was properly interpretted.

10. The use of the short term memory which was

modelled into the SPEREXSYS was helpful in increasing the

accuracy of the SPEREXSYS in those instances when the wrong

choice would have been made had it not been that the

correct word was spoken in a previous sentence.

11. One of the user initialized (and program

adjustable) variables which was the acceptance threshold

(acceptthresh) should be set as high as possible without

interfering with the selection of the correct words. This

variable is useful in determining where the end of

sentences are. The higher its value is, the earlier that

determination can be properly made.

12. In addition to some of the above mentioned methods

for increasing the effectiveness of the voice decoder, the

SPEREXSYS improves the reliability of the voice decoder by

97

-

- - S . . 44 -. ..-. -. -- -. -

reducing the size of the vocabulary it has to search. This

is done by applying the syntactic constraints to the next

word in a string before the input utterance is analyzed and

word options are considered (in the voice decoder). This

has the effect of reducing the vocabulary size of possible

words. Since the reliability of a voice decoder is related
*V.

to its vocabulary size, this vocabulary reduction results

in improved voice decoder reliability.

13. Although the SPEREXSYS is often forgiving if the

correct word is not always the word chosen as most likely

by the voice decoder, the SPEREXSYS is highly reliant on

the voice decoder choosing the correct word as the most

likely word most of the time.

B. Recommended Improvements and Enhancements

The following are areas which need to be improved,

.4 rethought, further researched, or enhanced:

1. More research needs to be done on the behavior, and

effect of, the short term memory in the HSRS. The impact of

the short term memory probably decreases with time perhaps

with respect to the logarithm of the time since the

utterance. It may favor certain types of words such as

uncommon words, longer words, nouns and verbs,etc. It may

be able to be influenced by semantics. These are things

that need to be investigated and the results incorpo-ated

.-,' into the SPEREXSYS.

98
4..

2. The phenomenon of favoring longer words over

shorter words was the result of experimentation. This

researcher is not convinced that the data gathered from

these experiments conclusively demonstrate that this

phenomenon is active in the manner in which it has been

interpreted and applied in this thesis. More research needs

to be done in this area.

3. After much rethinking of the basic assumptions that

lead to the use of a two word buffer lookahead in this

thesis, it appears that if semantics can be incorporated

during string construction (and it should be) then only a

one word buffer lookahead should be used. As it currently

stands, the two word lookahead interferes with the

mechanism that prefers longer words over shorter words.

4. The dynamic readjustment of the two variables

searchdepth and acceptthresh should be further studied. If

acceptthresh is dynamically readjusted, it should be

adjusted based on the current track record of correct word

likelihoods, not on a blind incrementing and decrementing

algorithm. If searchdepth is readjusted, it may also be

desirable to increase the number of buffers of lookahead.

This recommendation may be withdrawn when semantic analysis

during string construction becomes available.

5. The English Parser should be put on the VAX (as

well as the voice decoder when it is ready) in order to

eliminate the time consuming communications across a low

S '-. speed modem link.

99

"€ -'

-".' '" ". . ' ," - "-," " " ..- " " ,''.- - " - " -k. . - - .j &.. 2 " " "- ,

6. The current translation of English Parser feature

types into a vocabulary list of possible next words from

which the voice decoder can choose is a very inefficient

and time consuming process. This process could perhaps be

speeded up by the following:

a. Do a front end elimination of illegal feature

types.

b. Do a check and elimination for reduntantly

specified types.

c. Use parallel searching and processing of the

translation of legal types into vocabulary

lists.

7. Appendix D outlines a theory on the way the HSRS

searches for best word matches which would eliminate the

need for the entire function discussed in number 6 above.

8. When a real voice decoder is eventually hooked up

to the front end of the SPEREXSYS, use a vocabulary size

small enough to ensure that the correct word is the most

likely word most of the time.

C. Possible Future Extensions of This Work

The syntactic constraint of the voice decoder's output is a

critically important function the speech recognition

process. But it is quite clear that syntax alone is

inadequate to constrain the output of the voice decoder so

100

%*7.

that general English speech recognition can be

accomplished. Several levels of semantic analysis have been

suggested in this thesis. At least intra-sentential

semantics must be developed and integrated into the

SPEREXSYS.

Beyond that, an entire hierarchical system which is

modelled after the HSRS needs to be developed. The

SPEREXSYS might be useful (although this is not suggested

by the discussion in appendix D) as the syntax analyzer in

such a system since it behaves in a psychologically similar

fashion to the HSRS.

Io

101

.

Bibliography

1. Akmajan, A., and F. Heny. An Introduction to the
Principles of Transformational Syntax. Cambridge,
Mass: MIT Press, 1975.

2. Bach, Emmon. An Introduction to Transformational
Grammars. New Yor'T. Holt, Rinehart 7-Wd Winston, 1964.

3. Barr, Avron, and James Davidson. "Representation of
Knowledge," Handbook of Artificial Intelligence,
edited by Avron Barr and Edward A. Felgenbaum. DTIC
document number AD A074078, 1980.

4. Chomsky, N. Aspects of the Theory of Syntax. Cambridge,
Mass: MIT Press, 1965. -

5. Chomsky, N. The Logical Structure of Linguistic Theory.
New York: Pelnum Press, 1975.

6. Doddington, George R., and Thomas B. Schalk. "Speech
Recognition, Turning Theory to Practice," IEEE
Spectrum, 18:26-32 (September 1981).

7. Erman, Lee D. Fredrick Hayes-Roth, Victor R. Lesser,
and D. Raj Reddy. "The Hearsay II Speech Understandin4
System: Integrating Knowledge to Resolve Uncertainty.
Computing Surveys, 12: 213-253 (June 1980).

8. Foderaro, John K., and Keith L. Sklower. The Franz LispManual. Regents of the University of CalTorni, 1981.

9. Gardner, Anne. "Search," Handbook of Artificial
Intelligence, edited by Avron Barr and Edward A.
Felgenbaum, DTIC document number AD A074078, 1979.

10. Gardner, Anne,et al. "Natural Language Understanding,"
Handbook of Artificial Intelligence, edited by Avron
Barr and-dward A. Felbenbaum. DTIC document number AD
A076873, 1979.

11. Kabrisky, Matthew. A Proposed Model for Visual
Information Processing in the Human Brain. Urbana:
University of Illinois Press, 1966.

12. Kernigan, Brian W., and P. J. Plauger. "Programming
Style: Examples and Counterexamples," Computing
Surveys, Vol 6, No. 4-303-319 (December 1974).

13. Koutsoudas, A. Writing Transformational Grammars: An
Introduction. New York: McGraw-Hill, 1966.

14. Lesser, Victor R., Richard D. Fennel, Lee D. Erman, and

102

D. Raj Reddy. "Organization of the Hearsay II Speech
Understanding System," IEEE Transactions on Acoust.,
Speech, and Signal Processing, ASSP--: 11-4
(February 1975).

15. Levinson, Stephen E., and Mark Y. Liberman. "Speech
Recognition by Computer," Scientific American. New
York: Scientific American, April 1981: 64-76.

16. Marcus, Mitchell P. A Theo of Syntactic Recognition
for Natural Language. Cambi7ge, Mass: MIT Press,
1980.

17. Milne, Robert W. Handling Lexical Ambiguity in a
Deterministic Parser. PhD Dissertation. University- OT
Edinburgh, Edinburgh, Scotland. Not published.

18. Montgomery, Gerald J. Isolated Word Recognition Using
Fuzzy Set Theory. MS Thesis GE/EE/72-7.
Wright-Patterson AFB, Ohio: School of Engineering, Air
Force Institute of Technology, December, 1982. DTIC
document number AD-A124 851.

19. Peters, Lawrence J. Software Design: Methods and
Techniques. New York: Yourdon Press, 1981.

20. Seelandt, Karl G. Computer Analysis and Recognition of
Phoneme Sounds in Connected Speech. MS Thesis

". GE/EE/81D-53. Wright-Patterson AFB, Ohio: School of
:4 Engineering, Air Force Institute of Technology,

.] December 1981.

21. Stevens, W.P., et al. "Structured Design," IBM Systems
Journal, Vol 13, No. 2 (1974).

22. Winston, Patrick Henry. Artificial Intelligence.
Reading, Mass: Addison-Wesley, 1977.

. 10

103

APPENDIX A

SPEREXSYS PROGRAM LISTING

.7T 77

SYSTEM FUNCTIONS DEFINED BY FRANZ LISP NOT IN FRANZ LISP *

(dedare (m~w Q)

(defun max (alist)
(prog(0

(xetum (mwxei alist 0]
(defun rnaxel (alist n)

(cond
((null alist) n)
(t(cond

* I(t (maxeI (odralist) n]

;.GENERAL PURPOSE, GENERAL USE FUNCTIONS

(defun pintstgIst (rerrstg

(cond

;aiar rwit = wards of first sting

;i.e.- '(t1be (0 15) .95)' is a wordl

(defun printting (renstg)
(cond

((null rwrisWg nit)
((equal (cear rerntg) 'fpuxict)(pninc 'ID)
(t (prine 'JD(print (cawr zrntg))(printsbing (oir ranstg

- - ;xrremstg= wqiddict
;i.e.- 'the~ isa wordcidt

.9.THIS IS SPEREXSYS - THE SPOKEN ENGLISH RECOGNITION EXPERT SYSTEM

(defun spxaznit C) xd 1 - clled by sperexsys - initialzes the spemexsys

(tea)epr)(terpr)(tepr)(tepr)(terpr)(terpr)
(princ'P.9. 999.9999999

(terW)
(piric ?"

(prinej"* W elcome to the SPoken Erglish Recogruition EXpert SYStemi~

(princj" (SPEREXSYS 91

(prixcI

(tew

_3S T

(•".-r) (terpr) (terpr)(terpr) (terpr) (terpr)
(pnc -'Please ready the M ine English Parser and the A FIT A coustic analyzer.D
(terpr)
(princ ' hen they have been readied, input the device I.D. of the D(terpr)
(print '[English Parser. It should be of the followirg for r /dev/ttyi7 t)
(r)(terpr)(terpr) (terpr)(terpr)(princ '> I
(setq epoutport (read 'epoutport))
(setq epoutport (outfile epoutport 'a)) ;open output port to DEC-10
(terpr epoutport) ; this puts a vertical bar in the ep's output buffer.

it is necry in order to properly trigger the reading
of the epresporse the first time.

(terpr)(terpr) (terpr)(terpr)(terpr)(terpr)(terpr)
(terpr)(terpr) (terpr) (terpr) (terpr) (terpr) (terpr)]

(dfun global (ismintim) ;md 2.21 1- called by epfe - initializes global vbls

(load 'voc-dic±.) ;all the featuxes (grammar types) deflned
* as a set of vocabulary words

(load 'dispxs) ; list of legal & illegal featured

(aetq inittme tim) ;start time for a sentence

(setq topdhoienum. i) ;same s searcdepth in semnanalyzer

(stq numtinngs (times i)) ;number of stringsallowed
,to be acive in epfe

(setq minacxept(times m3)) ;3 mes thevalue of
accpthresh

(setq init1) ;1if= 1, thenthis isthe frsttime through
for this sentence

(.etq rmxwordtim. 200) ;aproxiriate tirne it taks to pronounce
longest English word

(mtq rmxstnum s) ; number of lst used stringnium.

(setq nxgslst ') epfe~ s requst to voice decoder for
noxtword in sings

(setq op~t.stglst'()) temporary stringlist value

(setq optstg ');used in nvds 2.2.2. 1. 1 & 2.2.2. 1. 1.1

(setq stringlistO() :the list ofacive stings

(wtq wordpbst 0);voice dewxder's response to epfe's
requist for next words

,_ _... _

(setq epreslst '0 English Pafser response list

* .(seWq topwordlst '0)) list of top seardidepth words for
every active string

(setW optsesIst 0)temporary variable used in manipulating
,sentatist,

(setq senistlst '] sentence string list (epfe's reponse
to the semantic analyzer)

(defun. dim (stgnum stglst) morxd 2.2.2. 1.1. 1 - called by lookatnext -
eliminates nil epresponses

* from epreponselist &
* eliminiates corresponding string

from tringlist
(wand

((null stglst)(print '(enrr in dlim)))
((eq (ar stglst) stvauma)

;caar sigis = string number of fit string in stlinglist
(setq optstg (append opstg (cdr stgL-))))

(t (setq optstg (cons (car stglst.)(elim signum (air stgist.]

(delun lookatnext2 (epme) mod 2.2.2. 1. 1- called by kilnilsts - icfrnts nil
* apresponse & wds elin

(wand
3.((or (equal (cdr epres) '(nil)) (null (cdr epres)))

(setq optstg '()) dim (car epm) eprest)
.opbt used for building new epresist without
;telrsponses

(setq epresIst. ojptg) (setq optstg'0
(dim (car epres) stringlist) (setq stiinglist, optsWg

-> ;here optstg used for building new striglist
;without strings that, have corresponding nils
;in eprudst.

(defun Ilnili (resi) ; ad Z.2.2.1 - willed by forrnnxgs - elMninate
4.-,strings from strinajist, if correspond-

* ing qxresonse is nil
(wand

((null (car menstg)) t)
(t (lookatnext2 (car rmsgf(Inists (air rermig]

;cerar 'rt = fit eyres in renuit

(defun diedcfpun (nect2) rmod 2.2.2.2.1.1 - called by examnext2 - looks for
fpundsg in epre

((null next2) nil)
;wxt2 is a list of a list of features in an eprusponse

((equal (car next2) '(fpu.c)) L)
(t (diedcfpun (air rnext,3]

(defun.adtsestis (stglst stgnur) mod 2222.2 -called by exriext2 -
adds strirgs to sentstlst

which have fpun±t in.
alnespondiflg epres

(cond
((null stglst)(pninc 'rrror in addtcsts)
((equal (caar stgst) stgnum) foud string which rnatd'es

epresIst for fpunc
(setq sentstlst (cons (car stglst) ser-tstlst)))

;so add it to sentstlst
(t (addtosesls (air stglst) stgnumn]

(defun examnext2 (epres) moxd 2.2.2.2.1 - called by f pundtproc - aids stings
, to senistringlist when fpundts ama

found in epresist for that string
(cond

((checkfpun (air epres))(addtosesUs stringlist. (car epres]
;air epres =next2 = list of list of f eatures f rom

* English Parser

V (defun fpunctpmoc (remstg) mod 222.2 - called by tornxgs - iteratively
* strips epres's fzrmopresls~t

(wond ; rerg =epreslstfirt timnein
((null (car rerrutg)) t)
(t (examnext2 (car rerrstg)) (fpundtproc (air rembtg]

;oar rarst is a complete epresponse for the
.with the string number = caar rarnstg

(defun gettirni (words) ; moxd a-2.12a1 - called by findtimi - returns
* tixn2 for the last word in string

(cond
((null (air words)) (cadadar words)) ; if lest word in string,

return the termination
;time for that word

"I' *(tirn2)

(t (gettimi (air words]

(defun trnslate (typien) ;mod 2.2.2.3.1.1.1 - called by getnextl - translates
parser's formr of types to voice
deouders formsa or types

-~(cond ((equal typEn '(fpund)) nil) ; take out ' [f punc]',
((equal typen'(fpunc)) nil) ;'[all]', and '[t]'
((qa ypn()ni) rsone 5

* ''I((equal typen '(t)) nil) eresponses fo

S (t (rturntypen]

10

(defun geinexti (stgnum. next2) ,mod 2.2.2.3. 1.1 - called by baidrnxgs -

makes list of types (nextI)
to be part of nextgus

((null next2) O
(t

(setq type (translate (car next2)))

(od((equal type '(Q)) '((all))) this is here for
future use when epfe wont be
ignoring '[t]'

(type (cons type (getniexti stgnumn (cdr next2))))
(t (getnexti stgn.uxr (cd- next2] ;these two lines are

buildirg translated rext2
(now called nexti)

(defun findimi1 (stgnum, stglst) mo 2.2.2.3. 1.2 - called by buildnxgs -
* finds string in stiingnumn
* which matches stgnum and

(cn calls gettim

-j ((null stglst)(terpr)(princ 'rn'r in findtiml P
(ptinc $r epres was nil for stgniurn D(print stgnum))
((equal (CBarStglSt) StnUM) (getiM (odar stglIst)))

;c aw stglst, = sting number cdar stglst = words
(t (flndtirnl sIgnum (air stglstj

(defun buildnxgs (stgnum nexl2) ; mod 2.2.23.1 - called by maokenxgslst, -
* builds next-guses and adds
* them to nextgslst.

(prog (type)
(cond ((null next2) (return t)))

% ~(stq nexti (getnextl stgnum next2))

(stq nxgslst (co~ns (cons stgnum (cons timi nexti)) nxgslst]
now adds new nxgs to nxgslst
form of nxgs is '(stgnum. timi (feature set))'

(defun rmkenxggsist (rurtg) mod 2..- - called by forinnxgs - makes
* next-gues-list. for outpuit to
* voice decod~er. Iteratively strips
* ejxrss off of epreslst.

(cond
((null rerrsta t) ;reTrtg = epresIst fh-rst ime in
(t, (setq nextI '())(buildnxgs(caar rerrtg)(alar rerrsig

string number words
(makenxgslst. (cd- remstgj

(defun tormnxp) mod 2-Z2 - called by epfe - forms next-gues-list
(which is output to voice decoder).

(P1,g(0

(wond (init (settj nxgslst (list (cons rnaxstnum (com inittimne

(+ 1 nuxstnurn) (setq stzinglist (cons (list maxstnun)
-.- stringlist)))

(fpundp)roc epreslst)
(mokenxgsls epresist)))

(ter)(terr)(prind~Jn exiting fonnmcgs: nxgslst D
(print nxgslst)(terpr]

(ddfun tunio2 (alist blit) mond Z2.3. 1. 1.1.1 - calle] by prodeattenn -

* perfains set union of two

(wond
((null alist) blist)
((member (car olist) blis) (union2 (cdraWist) blist))
(t (cons (cir alist) (uniori2 (air Wist) blist])

(ddfun inted-A2 (alA blist) ;moid ZZ23.1.1.1.2 - called by pradeatisri
* - perfomns set intersect
*o atwo lists

(coni
((null abst)')
((nember (car olst) bfist)

(cons (car allst) (initersadt2 (oir alist) bit)))
(t (intnret2 (c&lralist) blit)]

(ddun wornjirrwnt (universe nllst) ; rid 2.23.1. 1.1.3 - called by
pvudeottenn - performis the wt.
cornplimentof nhlist in the

* given universe
(wond

((null universe)')
((riwmbw (cur universe) nlit)

(wmrrplirmnt (cdi- universe) nlist))
- (t (cons (cur universe)(ccmiplixnt (air universe) nlist]

(ddfun rdattsun (fesdermr) ;o 2.2A 1. 1. 1 - culled by getwordopt -

*into word otosfo
* which the voice decoder
, can choose

(ad((null (air feattisim) feettarm is a list of a single feature
(wond

((member (cur fezttenr notleatset)')
(t (eval (car featten~n)))))

((equal (cadr feattrn) 'or) feattern is of form '(feature or

4%r

(x~nd
((atomn(caddr reatterrn))

(unicn2 (pitdeatrm (List (car feattermn)))

((no (eual(caddr fatr)'o)
(unicn2 (prcdeatterrn (list (car featterm)))

(pzudeat erm (caddr featt errm))))
((atomn (cadddr feattrrm))

(unicn2 (prvdfeatrerrn (list (car featterm)))
(compliment all (proxfeatterm (cdddr featterm

(t (union2 (prodxeattenn (list (car featterm))
(oorrilimfnt all (prodeatterrni (ca5.ddr f eatterin

((equal (cadr feattermn) 'and) ;featterin is of' form '(feature and -

(oond
((atom (caddr feattarrn))

(intedc2 (prcxfeatterm (list (car feattern))
(prodeatterm (oddr f eatterin))))

((not (equal (caddr f eatterrn) 'not))
(intersed2 (prodeattemn (list (car feattern)))

(pnrudeatterm (caddr featterm))))
((atomn (cudddr feattermn))

(intersect2 (prodeatterr-r (list (car featterm)))
(complimnent all (prodeatterro (cdddr featterrn

(t (intaed (prodeatterm (list (car f eattermr)))
(cnrilirnent all (prvdeatterm (cadddr featterm

((equal (car featterxO 'not) ; the part of the previous featterm
;of the form '(not-)'

(wnd
((atom (caudr featterin))

(cromplinwrt all (prodeatterrn (air featterm))))
(t (comipliment all (prodeatterm (cadr featterm))))))

(t(tarpr)(prine'rrvrinprodeatteum o(terpr)(princ'I P
(pint featterm.)
(princ'jis not alegal feature-type from the Pbrser.p 0

(dfun getwordopta (featlist) ; xd 2.2.3.1.1 - cled by printwordopts -

functions as a driver for

(~nd the feature list interpreter

(t (union12 (proxfeatterrn (Car featlist))
;car =first feature in featlistU (getwordopts (atr feetlist))]

(ddfun printwords (wordopts) m od 2.2.1.2 - called by printwordopts -

* prints word options out to
u* ue(I I per line)

(jiog (n)
* loopouter

(90tqn 11)

loopinner

(cond
((null wondopts)(retun Q)
(t (princ 'j D (print (car wordopts))

;first word in wordopts is printed
(seq wrdots(r wordopts)) (setq n (sub I n))

the restof the words ame sent badc
through again

(setq wordoour-t (addi wordocurt)
(cond

((plusp n) (go loopinner)) ;if 11 words have been
printed on this line, start
another line

(t (go loopouter)))]

* * (defun pinbvordopts (epresponse) ;mod 2.2.3.1 -celled by intefvocdec -

functions as a driver for
the useres listing of the

words from which thre voice
decoder can choose

(cond
((null epresponse) (terpr) (terpr) (prn 'Vrr In printwordoptsD)

(t (terpr)(terpr)
(princ

(princ 'Posible words for voice decoder to choose from are4
(terpr)(cond

((equal (caailr epresponse) 'all) (princ ' LL W ORD SD)

(t (setq wordcoult 0) ; initialize wordcount which
is incrmeAted every time a
word is printed in printwords

(pintwords (getwordopts (aldr epresponse)))

(telpr) (terpr) ;eddr epresponse = nexti

(jzinc]j TOTAL NUMBER OF WORDS HAS BEEN REDUCED FOR)
(pxinc 1 THIS OFTION FROM 200 TOD~
(print wodmunt))) ;wordcount now = total

% *~ *number of words printed
(teWp)

(debm intarfvoerlec (rurrtaj rmxd 2.23 - celled by epfe - mead print
staterrints in this xmdule for an
explanation of its function

(cuid ;rerit = nxgist farsttime in

(t

(terTpr)(ptinc Ftemember to use the following farmatD

(printwordopts (CEW1MRSrTt)

;car rmnstg is flzst nx-umrq t(o

(t~pr)(pnnc ;a. single string) in hA ca 'wrd))

(topr) (prim 'r~~~j~xt-caes- rquest= (rn crrmW
(terpr) (princ 3>
(setq wordgslst (cons (cons (aar rerrstg)(cdr (muad'wrs)

A ~~~(inte.rfvocdec (t- r rerratg)] shn wodst)

(def un findfpundt (rsnst-g) rind 2.2.4. 1.1 - called by pr-ocwdgs - mbturns
word value for fpunct

(oond ;runrstg = wards in wdgs
((null ruxtg) nib)
((equal (caar rrg 'fpunct)1 (car reinsta)

;caar rmAg = wondict
;searche every word diet in rernstg until it finds
;an fpunct or it retuns nil

(t (flndpunct (cdr renutg

(defun augsenstg (stgnum fpunrval rrstg rind 2.2.4.1.2 - alled by prvcwdgs
1.' adds fpundtword

value to end of approp-
* riate string inV ~~sntsbigit

(cand ;fpunval is of the form '(fpunct (tirni tirn2) prob)'
0 ~rermtg is sentstlst first tim inl

((nc- rMISt) t)
((equal (caar rerm stgnuxn)

;wea rerntg = signurn of first sentence in renistg
(setq newstg (append (car rernstg) (list f punval)))

-(setq op!.slsst (cons newstg opt--slst))
-: .~ (setq aptseslst (append optseslst (cdr rerrsta)))

(t (aetq optsetst (cans (car renmtg) optsesls))
(sigmustg stgnum fpunval (cdr renutg

(defun calenewpub (tinmnpvb) ; rmod 2.2.4.1.3.1 - called by diangeprub - does

V~~~~e (pgprboibl ~ calculation.

;retum pm + 1-pb)[1 i(br2 -tixnl) /mxworltirrw]
(e timi (caw- tinun-prob))

(setq Uim2 (cadar tinnprob))
(setq prtt (oakr tirruprob))

%4 (setq ens (dii! 1.0 prob))
(setq ens (timns ans (dii! tine tirni)))
(aetq ans (quotient axis 2.0 nmwortni))
(return (aid prub arm]

(defun abangepmub (waits) ;rind Z2.4.1.3 - called by prvcwdgs - changes prub

.. .~ .- .r .r .t .* .t .. * - 7 . . -

of word according to its wordlngth

.-. '-. . . (cond
.°-'.- ((null words)optseslst) when all done, returns serAstist

; with danged word probs
(t (setq newprob (list (coksnewprob (cdar words))))

; cdar words = times and
;prob for fErst word

(setq newword (append (cons (car words) (list (cadar words)))
;oaarwords = worddict for
; .tlst word
;cadar words= '(timl timP2)'
', for first word

newprob))
(setq optsesist (cons new-word optseslst))
(changeprob (cdr words]

(defun getptobist (words) ; mod 2.2.4.1.4 - called by procwdgs - makes a list
" of all the probs in wordguess

(cond
((null words) ")
(t (cons (caddar words) (getproblst (cdr words]

;cddar words is new prob for word

(deun newalist (nur alist) mod 2.2.4.1.5.1 - caled by orderflst - deletes
; first oarrencoe of num in

alist, then rebi ns alist.
? NOTE - THIS IS A LATE DESIGNED

- MODULE"AND DOES NOT APPEAR IN
. IN THE THESIS CHARTS OR
. NARRATIVE.

(cond
((null alist)(terpr)(princ 'rror in newlisL No matda found. '0)
((equal (- alist) num)(dr alist))
(t (cons (car alist)(newalist num (odr alist]

;0400000 - --------

(defun xdefiit (alist number) mod 2.4.1.5 - colled by pxvcwdgs and by
c;optomns (2.2.6.1) and by

ranksents (2.3) - orders
- the top number of elements

S•in alust in decresing order

(prg (nectnum)
(setq number (- number 1))
(cond

((or (minusp number)(null alist)) (return '0))
% (t (aetq nextnum (max alA)

(at 1 alist (newalst nextnum alst))(retur (cons nodnurn (orderlit als number]

(deun toifunct (prob words) ; nod 2.2.4.1.6.1.1 - called by gettopwds - pulls
out words with probs matching

" ; prob.
%.I

-- 1 -.-p. * * ". . . " .

* (cond
((null words)'0

* - (t (cond
((equal prub (raddar words))

;caddar words = new prob for First word
(cons (cur words) (tcpfunt prob (cdr words))))

(t (topfunct prob (air words]

(defun. gettopwds (problist n words) mod 2.2.4.1.6.1 -called by findtopwds -

makes list of words in
wordguess whichi rnatdi
the prvbs in problist.

- - (prog(0
(setq n(n 1))
(cond ;only do thisforthe top nprobs inproblist,

((rninusp r-)(retuarn 0()))
(t (return (apper d (topfuncL (car problist) words)

(gettopwds (air problist) n words]

(defun stziptopn (~alist n) mod 2.2.4.1.6.2 - called by flndtopwds - keeps
only the top n words of alist.

(prog(0
(setq n(- n 1))
(cond ;this used to be necssry wh-en gettoprwds fund~ioned

differently -- ncw its redundant
((or (null alist)(rn inusp n))(retnrn O)))
(t (return (cons (car alist) (striptopn (air alist) n]I

(defun findtopwds (problist n words) ,mod 2.2.4.1.6 - called by procwdgs -

* rmain driver for submods
* whih fnd top prob

* words (n of the").
(prvg ()

(return (striptopn (gettopwds; problist, n words) n]

(defun rpxcwds (wdgs) mod 2.2.4.1 - caled by dedtopwds - pidics top words
and makes topwordlst

(prog (n fpunval)
(setq fpunval (findfpunc±, (air wdgs)))

;olr wdgs =words

(aond (fpunval (augsenstg (car wdgs) fpunrval sentstLst)
(setq sentstlst optseslst)))

;Cokr wdgs = string number
(setq wdgs (cons (car wdgs) (shortermunm (cdr wdgs))))

send all the words to the short term memory to
incrase probs of words recently spoken

(stq wdgs (cons (car wdgs) (dhangeprob (odr wdgs))))
sesid all words to changeprob to inawse word prrLs
of longer words

(setq optseslst 0
(setq pmblist ~
(cond ((null (cdr stnnghist)) (setq n nunmtnngs))

if this is the first time through for this sentenc,
allow for a greater margin cf error for Fist words

* ~~~(t (setj n toi,&oicenurm))) (dwg)
(e topprist (orderlist (getprubist crwg))

(setq topwordlst, (nnrs (cons (car wdgs) (f..ndtopwds topitn
(air -dg--))) topwordlstj

(defun dedtopwds (rer istg) n-id 2.2.4 - called by epfe - iter-atively strips
- .. wordguese--s of! of wordgslst (wich

is rerristg in this mod) and sends themn
to pmcwdgs.

(cond
((null rvnsg)(terpr)(trpr)(pzinc 'Pn exiting detopwords: topwordlst = 1(printtopwordl*
((or (null (c ar remsWt)(equal (cdar rernstg) '(ril))) (dedopwds (cdr rerst))

,aiar rerrstg = words of the First wdgs in remstg

(t (prxvdgs (r rernstg)) (dectcpwds (oir rerrstg]

(defun getwords (stgnum. remstg) mod P-2.. 1. 1. 1 - called by findwdsmatdi -
returns the list of words

* in toprwordlst which have
* same string number as
* string being pmomsed in
* findwdsmatch.

(cxrnd ;.rtop word list first time in
((null remstg) (princ 'Pnr no match in getwoids.D)
((equal (cear ren tg) stgnum) (cdar renrstg)

;caar rerrit = stin number, odar =words

(t (getwords stgnum (air rerrtg]

(defun maksts (string words) mod. 2.2.5.1.1.2 - called by fndwdsxnatdi -
* t~luvws away fpundts. A Iso
* nuoke new stings with new
* words and concats to optstglst

(crind
((null words) t)
(t (and

((equal (cawrwords) 'fpunt) (makests string (odr words)))
;awr words = worddict of first ward in words

(t (setq rmxstnumn (+ 1lmaxstnum))
get the next unused sbrig number

(setq optstglst (cons (append (cons rnaxstnum (air stnng

))list (car words))) optstglst))))
make new complete string and add it to
optstg~st

(rrekests string (air words]

(defun fidwdsn.Ldh (strn" mod 2.2.5. 1.1 - celled by newstrings - calls

Srrakests with a string and its
Sassocdated top words

(prog (wordls)
(setq words (getwords (car stnng) Lopwordlst))

;car string = string number
(makests string words]

(defun newstrings (remstg) rod 2.2.5.1 - called by startrsts - calls
Sflndwdsmatch with next string till
; strirglist is exhausted

(cond ; rerrstg is stringlist fist time in
((null remstg) optstg!st)

(findwdsmatch (car nmstg))
;car restg is first string n rermtg

(newstnrgs (air r-mt]

(def un bulddecist (renWtg; md 2.2.5.2.1 - called by maldoeision - builds
; list of third words from end of

(cond
((nu rerstg) nil)
(t (setq decword (caaddr (reverse (car remat])))

;caaddr is third word.dict from end of string
(cond

((member decword dedist) t)
(t (setq dedist (cons decmord dedist))))

(buildedst (ar renstgJ]

(defun makedecison 0 ; mod, 2.2.5.2 - called by startnsts - displays list of
; all third words from end of strings
; which Icllowsts will make decision on

next

(Pg 0
(cand ((cdddar stri.list) ; only do this if there are more than

two words in each string
(setq dedist (cons (caadr (reverse (car stringlist))) '0))
(crnd

((not(equal dedist '(nil))) (builddedst (cdr stringlist))
;dedist is a list of all third word-dicts from

;the end of every active string
(terpr)
(terpr)(princ % deision is now being made on the

*(princ 'Pidrd word from the end of all strings.)
(terpr)(princ 'Ihe choices amD(terpr)
(print dedist)(terpr)]

* (defun artrt) ; mod 2.2.5 - called by epfe - initializes global strings
used arid calls newatrings

-.. (Pro 0

(setq optsst '0)
(setq stringlist (newstrngs stringlist))
(etq topwordst.')
(setq wordgLst'())

.

(terpr) (pninc ~Xfter exiting startrsts s'tnnglisL
(print stninghist)
(nuakedecision)]j

(defun calcstgrub (words) mod 2.2.6. 1. 1.1. 1 - cailed by stgprob - returns
* aimmulative of word probs in
* string (just words here - nio
* stingrium.)

(aond
((null words) 0)
(t (add (cadar words) (calcstgprvb (cdr words]

;caddar words= prob of flrstwordin words

(defun stgprob (words) mnod 2.2.6. 1. 1.1 -celled by getstgprobs -esstgprv
* and oonoacts it problist and then
* retLurs stgprob.

(prog (prvb)
(setq prob (calcstgprb words)) ;get the string prvb

L-etq problist (cons prob problist)) ;add it to problist
(return prob]

(defun getstgprcbs (renetg) ;med2.2.6. 1.1 -called by doptoirsarid by
* ranksents (2.3) - makes new

-p * list of strings with stringprob
* corncatted on f ront of eachi strg

(cond zemnstg = stringlist first time in
((null remstg '0)) reretg = stringlist farst time in
(t (cons (cons (stgprb (odar ren-ttg)) (car remstg))

* *cdar remnetg = words of first string
the above adds stgprvb to front of eea sting

(getstgrvbs (cdr rerretg

(defun. gettopsts (prob remstgW mod 2.2.6.1.2 - called by choptomns - returns
the list of strings which

(con reratg sbnglitflstti~in have stringprvbs above or

*equa to lat pmb in
* irablist

((null remstg) '0)
((iusp (diff (caar remstg prob))(gettopsts prob (air rernstgM)

;,car remnstg = string prob for first string in

(t (cons (cdar rmrat (gettopsts prob (air rexrt]

(defun choptorns (renug) mod 2.2.6.1 - called by killowsts and by ranksents

* (mod 2.3) - returns the
* the top mnaxstgnumstrings in

sbinglist
(jrog 0 ; enreg =stng, st

(setq renstg (getstgr mbs re rn-s-))
(setq problist (orderhist prubli-t rrms-trngs))
(return (gettopsts (car (reverse prcblist*)) rrrtg1

;cr= lowest aceptable strr prob

(defun overmlir (words n) rrwod 2.2.6.2. 1. 1 - called by check =inpr - rebir-s
acnrrnulative addition- of last 3
word probs.

(cond
((zerop ii) 0) ;quit when r (= 3) words haive been procesed
((null words)(add 1.0 (overmir. words (duff n 1))))
(t (add (caddar words)(overrnin (cdr words)(- n 1]

;caddar words = word Prob fcr First word in words

(defun diedaninpr (words) mod 2.2.6.2. 1 - called by elirurmain: - returns
a t if last three probs (added)
are greater tha nminaccept.

(cond ((greaterp (overrnin words 3) mir'.axept) t] send back 'T orly
if last three word probs are above rninaccept

(defun elimmninaco (rerrmWg mod 2.2.6.2 - called by killowsts - zeturns all
stigs with last 3 prubs above

(crnnnaxiep thireshold.

((null renatg) '0)a
(t (setq1 sting (diedunrinp- (reverse (cdar rerret)))

(cxond
((null stiing) (elimninace (cdr rerietg)) ; sting not

included in new stzinglist if it did
;not ps test in check mnpr

(t (cons (car rerietg) (elimmixc (cdr mmstg]

4 (defun ldllowsts C) mod 2.2.6 - called by epfe - driver for functions
chop sbinglist entries to nurnstrings and
eliminates strings below rmnaccept threshold

(setq stringlist (daoptomns stringlist))
(setq stringlist (elimminacc stninghist))
(terpr) (prino '6 fter exitig kilowsts: strnnglist =I
(print stringls)
(tnrpr) (terpr) (princ: 'ro summarize the above stringlist L
(jpwinc ihe following strings are still active:Li

.4~ trpr)(prntsglst stringlist)
(cond (sentslst (tarpr)(terp)(princ%' nd the following [

(prino 'ntences are to be forwarded to theD
(princ 'I semntic analyzer Li
(pnintstglst sentstlst)]

(defun s*gprint (strig) mod 2.2.7 1.1 - Clled by interfep - builds
compacted strings with pause and
xrnts them to english parser

(cond ; st-ing = words nst time in
((null stii-J(pri,-c 'ause]).
D (drain) (prin 'ause]).

Iepoutport)(drain epoutport))
(t (p int (ca strir))(print (ar string) epoutport)

;oaarsthng = f rst worddict in string
(primnL
(prine 'Hepoutpcrt)(stgprint (odr string]

(defun evals (instrs) mod 2.2.7.1.2.1 - called by interfsem - evaluates
instm

(cond
((null insirs) t)
(t (eval (carinsbs)) (evals (cdr instrs]

(defun ermnecovry 0 ; mod 2.2.7.1.2 - called by interfep - receives
; instrucions for recovery and cails
; evals to have them executed

(prog (instrs)
(terPr)(pnnc 'Please type in instructions to be evaluatdD
(terp)(print '(remember to nest list them))(terpr)
(prnc 3> D(setq i strs (read 'instrs))
(evals in.m)]

(defun interfep (sting) ; mod 2.2.7.1 - colled by iteprest - sends compacted
; , string with pause to english parser

and builds a list of ep responses
(prog (next2 epres dar)

(t r)(tepr)
(terpr)(princ 'Data from epfe to english parser followsD
(terP)(pnnc 'ko1([P (princ 'ko([I epoutport)
(stgrnt (cdr Aing))

;oir string = words in string (no string number)
loopI2
(setq next2 (readc))
(pint next2)(drain)
(cond ((not (equal next2 '))(go loop2)))

read next2 only after 'l has been read
(setq rxt2 (read))(print next2)(terpr)(terW)

;next2 is a list of a list of possible features for the
;next word in this string -- it is sent by the Parser

(setq epres (cons (cor string) next2))
(etq epresist (cons epres epresst))]

(defun itepret (remrg ; mod 2.2.7 - called by epfe - iteratively strips
;t n from stzinglist and calls interfep

(cond rumit= strinWist fas time in

((null (car rrrmtg))
;car remstg = first string in renst

(setq piport'stdIin)(drain epoutport) reset pirny
input port to the user's termiinal

(terpr) (print '(epresist is as follows:))
(terpr) (print epreslst)
(tow)(terp)
(princ ')f ould you like to try the EP interface againi?p
(terar)
(princ 'I(r -reun; i -new inr g - keep going)D

* (terW)(princ 'I DI
(setq char (read))
(cond

((equal diar'g) t)
((equal diar r)

(setq epreslst'0
(setq piport (infile '/dev /ty12))

* (drain epoutport) (iteprest stringlist))
((equal diar 'i) (terpr) (terpr) (terpr)

(tapr)(princ '?x'ou ame entering very dangervus tenitory2 For asistan
(eimmrecvy)

* (itep"Rs '0))
(t (terpr)(print cdir) (prim 'I is not a legal response The question was:D

(itepliest 0)

* (t (interfq, (car remsWt)(iteprest, (adr renmtW

(defun Wpe 0i s m tim) ;rrxd 2.2 - called by serresmlyzer - f unctions as the
interface between the eowlish parser and the
voice decoder. D etermtnisticufly builds
sYntadicullY coned strings f rom the voice

-' * deaxler's output and return cornpleted

(prg 0sentences to seriunalyzer for semantic analysis.

(global ia m im) ; nxxl2.2.1
loop
(forinnxg) ; mod 2.2.2
(terr)(princ Putput fmrm epfe to voice decoder follows:D
(mnterfvocxlec rixgslst) ; mod 2.2.3
(tirW) (Pinc I his concludes output (next-guess-requests)
(princ trmm the epfe to the voie deaider.D(terpr)(terpr)
(terpr)(ptinc' 3efore entering dednopwds. wordgslst=
(print wonrpgst)
(detopwcb wordgsst) ; md 2.2.4
(aond ((mull (car topwordlst))(retum)))
(9etq OXg9t 'I)
(stinsmts) ; mod 22.5
(cond ((null stinglist)

(terpr)(princ rpie done. Returning to semnantic D

(killowsts) ;mod 2. 2.6
(oond ((null gr~inglist)

(ter) (princ 'Ffe done. Returning to senantic D

(prine 'hnayzen. [(retur)))
(setq init nil if its m-ode it t~is far, it is no longer pmcnesing

the first word in the string.
(setq epreslst '0))
(setq iport (infile '/devfttyl2)) (drain epoutport) ; set priar

input port to the DEC-1 modern
(iteprest stzinglist) ;mod 2.2.7
(go loop)]

(defun semaninit ();mod 2.1- called by semanalyzer - initializes semantic
% analyzer global variables.

(setq tor~m'0))
(terr)(tepr)(ter)
(print: ronbvul has now been turned over to the semantic!
(print bnalyzer.p(terpr)
(prin 'Jrhis is the highest level of decision maldng in the!

* .(print 'peech recognition proeD (terpr)
(pgin 'in order to initialize the systemn error parameters!
(print 'jeine answer the following questons.!(terpr)(terpr)

* A-,(print j1ow many words deep will the A ooustic A nalyzer have!)
(prin tjo go inorder to Dterpr)a
(print 'kuarantee that the crrect word will be rtcngnized?!D
(print iNormally this is "31 .!(terpr)(princ 'I D
(setq seanthdepth (read 'searcdlepthi))(terpr)
(print 'If hat is the minimun acceptable average probabilty of!)
(print 'rxxmne for the last D (terpr)

* ~(princ jime words in a ting? (Normally this is .75).)
(ter) (princ 'I> D (setq aareptthresh (read 'axeptthresh))

(setq sentstart'- 1000)
(setq inittxn 0)]

(defunrndfpunds (sentstg) ;mod 2.3.1.1 - called by inarfpunds- if last
* word it the sentence is an

fpund, this rmod adds 100 to its
word prob.

(prng (newprob newward)
(aetq senst (reverse serittW)

((equal (aw sentst)fpc)
rm sentsts = word.dict of last word in sting

(u9tq newpvob (add 100 (caddar sentstg)))
'Sp;smldar sentstg =prvb of fpunt

5~IA

(setq newwort (reverse (car sentstg)))
(setq newword (reverse (cons newprob, (air newword))))
(return (reverse (cons newword (odr sentstg)))))

(t (return (reverse sentstg]

(defun. incrfpundts (rerrutg) moxd 2.3. 1- called by ranksents - counts
nurnber of sentences in sentstlst,
and calls rmdfpundts for each

-~ sentence.
(cond ;reunst = sentstlst, first time in

((null rernstg))
(t

(setq nur~ns (add 1 nuxnstrigs))
(cons (rrxdpunds (cur rexrstg)) (inarfpuncts (air rstgj

(detun newsst (prob rermaJ ; xxod 2.3.2. 1. 1 - cailed by topsent, - sets
topsenterice = sentence when
stprob = prob, rmoxves it from

(cond sentstIst. and returns senistist.

((null rerrutg(terpr)(princ 'jror in newses4)
((equal (carrnst pmb) (setq topsentence (cdar remsta)

(odr remtg))
;amr rerxutg = sentence sting prob
;odat tnstg = sentmice without sting prob

(t na~ (cwxerut(newseslst prob (clr remtg]

(dehn toperit (prob) ;mod Z32. 1- called by ordersentist - returns top
* jirob sentence after remoxving it from
* sentstIst,

(setq seitstst.(newslst. prob senitstlst))

-4'S.' (defun orcduentlst (orderedprobs) ; rrxd 2.a.2 - culled by rankwsnts - rank
ordmsent~stin decresing

, ~ord.- by stgjbsu

(t (cons (toJpueit. (cur onrdpl))(orderenUst
(edr orderedproWu

;CW orderedprobs is highest prob in list

(ddun ranlmnts 0mond 2.3 - called by sernrnalyzer - builds list of
seitences ordered frm highest to lowest

55%

choices basd on semntic best sentence rules.

(cond
((or (equal sentstlst '(nil)) (null sentstlst)) nil)
(t

(setq nunrstrings 0)
(setq sentslst (iria'puncts sentstlst))
(uetq prablist '0)
(setq sentWls (getstoyrobs sentstlst))
(ordersentdst (orderist problist numstingsJ

(ddu Oubmtsent (rexmstg) mod 2.4.1 - called by printsent - outputs rest
of sentence (best gues) to user.

(cond rrnstg = words of sentence first tim in
% ((null rerrstg)(prine'ID)

((equal (awrrrstW 'purict)(princ 'ID)
;CWr IMIrIt = worddict of first word in sentence

(t (prnxe'l I(print (cear remstgj)
(setq terrshorternrem. (cons (caar resrrtg) teripshotemnern))

; ad this word tempordrily to short term memory
if user approves sentence, it will be penneent.

; otherwise, it will be forgotten
(outzustsent (cdr rexnetgj

(ddfun printsent. (renmWg ; mod 2.4 - called by seralyzer - prints top
* dioe sentence in sentstlst out to

useu~s tuziinal

(sw Wrenshorta~nem 0))
-A (termu (tawr)(terpr)

~ q (tenw) (teipru (primc 'perexsys output to user-D(terpr)
(outretsent renutg)]

(ddum mufdbko nw rd 2.5 - celled by serreAlyzer- ask uer for yes/o
*feedbak on corrnessof sentence just

(prog (died)
loop

(princ Is the above sen~tenice correc? (Type "(yes)" or ' no)j)D

(axid

~~~~fp dwc * (m) (..u t)). --. .. . . -



% ((equal check '(no)) (return nil)))
* -. (go loop]

(defun renit (check) ;mod 2.6 - called by sernanalyzer - resets the error
paramneters basd on epfe's past performance

(prog0
(cond

(init. t)
(t (ccnd

(check have f ound cornet sentence
(setq shortenrnex (append teripshorternn shortennem))

here's where the temnporary sh~ort term memory
is added to the real short term memory

(setq inittim (gettimi (air sen-tout)))
(setq wrceptthresh (add .01 aacepttI'sesh))

((greaerp serchdepth 2)
(setq searttdepth (diff sArdi-cdepth 1)))))

(t
(terpr)(trpr(tepr)(terpr) (terpr) (terpr) (terpr)

(tezpr)( terpy)
(rin&'II'm scny, but the SPEREX SYS has failed to propeiy interpret this last D(te4b
(princ'l Please repeat the sentence giving particular cam to the pinnunciation4(terpr)
(puinc'j of the words which were irnprvpekly identiliecdb(terpr) (terpr)
(pulne 'I Hit the return key after yvu have done so.D

(taq3r(trprj(trpr) (tarpr) (terpr) (terpr)(terpr)
(puinc'fr D
;If a real voice decoder wee being used it would be
; rset at this point

J (se0q wropthmsh (diff wrceptthrsh.05))
(setqvwxhtdepthi(add searchdepth 2))

(teqr)(princ [frvm reirulk axceptuesh = P (print aroeptthresh)
(princ'j anudsearchdepth = (print ssrtdepth) (pinc'ID

* fn nnnn*.nnnnn mod. 2 - callednbs *flf*f****l*f
I po 04

.9. _______________

* ~ e~ eriet -- - -- nene~nnstarn nnnes*f.******nim
(sdq ent~st (anksnts)

* .nnnnnn.nn~nnnnn,.n..nn.*n**nn.*ln

* nnennnoennonnn nn~sef~n*n******



((null sentstist)(rni nil))
(t

(setq sentout (criar sertstLst))
;cdar serdsL-st = words (no string nuLmber)
of sentence'Ia

(tnrpr)(prirc [fmm mod 2: sentout = (print sentout)(terpr)(prirc 'ladsentsLst = D(print sentstlst)(prinlj
(printsent sertout)

b (w~nd
((userfdbk)(reinit t)
(t, (setq sentstlst (air seristlst)) (go loop2)))))

(go loopi)]

(delun shoitenirnprob (word pub) ;mod 3.1 - called by shorttennmern -

increass word prub if word. is
* in short term rremory

;new pob (if intsort termnmemy)= prob + (l1- prob)t/3

(od ((member word shortermem) (add .33 (timres .67 prob)))
(t pmb)]

(defun shorttennnwm (words) morid 3 - referencud by semantic analyzer and epfe
* * - inputs to eple through procwdgs -

modifies the probabilites of words in
*1~ * wds based on whether or not they have

recently been spoken in a user approved
sentence. Return the modified wdps.

* ((equal shortarmem O)) words)
((null words) O
(t

(seWq word (car watts))
-5' (seW prob (cadd& word))

(seW tim (cwlr word))
(seWq woiddid (cur word))
(setq prob (toxtrumprub worddidt prob))
(uetq word (cons worddid (cons tim es (list pmb))))
(cons wan! (tordnnnnm (air watts]



-%

~~~ ~~SPEREX SYS * * * **

SPEREX'-YS - top level - functions as a driver for the syster.
(setsyr-fx '# 'splidng 'toor)
(defrnaczo tocr () (prug 0 (return (list 'Icd)))
(setsy nx ' 'splicng 'torad)
(defm-r7: toand)(prog (return (List 'Kind[)))

(spxsirit)
(sernairlyzer)

THIS IS THE VOCABULARY/D ICTIONARY FOR THE VOICE DECODER W HICH
; IS USED BY THE SPEREXSYS

(defun vocdict 0
(ping 0

(setq all '(the to that tee tea air airforce error err or force farce
flerce fear system general gendre gent gents cent cents scent gem gym nor
all awl roll was wash want wall a as speaking peaking speak peak peek peeking
speech perng peachy king tow twist his hiss staff stay aft after fun about
bout out abort some sum sun such summer more recent recess regency regent
d3 sm sea cubed cuba cue bed dish dishes issues itches itch you ewes she
he sid told door dare there their they wrist risk is snow no know noting

nothimg namghty thin think thing gamble am big us ambiguous pick ambient
sub this dizzy inteet enter rest sin center cenmil intelligence intelligent
alliegenr se.mor repeat report port reap army arm me our are nredium median
mi my eye might be people peep hole pole poll land and an row. own round
dinn inn in intel into telephone folks foes foe foal vote owl agree green
enemy enema run running short shout ton on down ammunition we have got
goat ommunist communcations comrmunimtor get kit ghetto inform information
uniform units eunichs one two three four five six seven eight nine zero
sentence word number right wrong eoeoeo has))

(aetq fpunt all)
(setq fpunc all)
(stq noun '(tee tea air force system gereral gem awl wall peak speech

king staff sum sun summer recess regency cd see sea dish itch snow gamble
pick ambient interest ret center report port arm median eye people hole
pole poll land telephone foal enema goat kit ghetto informnation uniform
entence word squadron fear roll wash speak peek tow twist hiss stay bout

abort see ae dar risk know think enter sin sensor repeat reap row own
vote run shout get inform gents dishes issues itches ewes folks foes communications
units eunichs error farce gendre gent cent snt gym aft regent cuba there
nothing sub intelligence alliegence m dinn inn foe owl enemy ammunition
cormnunicator cents wrist airforce door peep intel))

(sdq nlp '(this me our my we))
(sdq det'(the tht a this an))
(stq wh '0)
(.etq tmsles '(tee tea air force system general gem awl wall peak speech

king staff sum sun summer recess regency c3 see sea dish itch snow gamble
pick ambient interest rest center report port arm median eye people hole

* pole poll land telephone foal enema goat kit ghetto information uniform
sentence word squadron fear roll wash speak peek tow twist hiss stay bout
abort see cue dare risk know think enter sin sensor repeat reap mw own
vote run *out get inform err want wrist airforve door no army be peep

" """" """'"' " " . .. '" " '"' '"' " " " " """." ,'- . "- " '" " / ."":' . " •" r

intel agree have see know))
(setq fu ure '(might))
(setq en '(aibed said told no noting got))
(setq verb '(tee tea air force system general gem awl wall peak speech

king staff sum sun summer recs regency c3 see sea dish itch snow gamble
pick ambient interest rest center report port arm median eye people hole
pole poll land telephone foal enema goat kit ghetto information uniform
sentence word squadron fear roll wash speak peek tow twist hiss stay bout
abort see cue dare risk know think enter sin. sensor repeat reap row own
vote run shout get inform to err was want speaking peaking peeking paing
cubed said told wrist airforue door is am army are be peep intel agree
have got see know has))

(setq vls '(am))
(etq vspl '(c3 cubed said told got))
(setq adj '(general fierce peachy recent naughty tin big ambiguous dizzy

central intelligent medium round green short communist right wrong speaking
peaking peeking pacing fun more mi noting))

(saetq relprn '()
(etq eorrma '0)
(setq have '(have has))
(aetq do '0)
(setq for'0)
(setq inf..omp '(that want said told have got see know has))
(setq to.e..inf-cmp '(have see has))
(setq two..bj '(told))
(setq name'0)
(etq variable '(a us))
(setq than '()
(setq quan-tifier'(all some))(, (3et, be..'(be))
(etq comp '0)
(etq of'0)
(setq ngstart '(tee tea air force system general gem awl wall peak speech

king staff sum sun summer reces regency c3 see sea dish itch snow gamble
pid ambient interest rest center report port arn median eye people hole
pole poll land telephone foal enema goat kit ghetto infonration uniform
sentence word squadron gents dishes issues itches ewes folks foes communications
units eunidrus error farme gendre gent cent scent gym aft regent cuba there
zothing sub intelligence alliegence mi dinn inn foe owl enemy ammunition
communicetor one two three four five six seven eight nine zero fierce peachy
recent naughty thin big ambiguous dizzy central intelligent medium round
green short commnist right wrong the that cents all a peaking peekirg
son more cubed dishes itches issues you she he their they us this army
my en intel we wrist airforme door me our no))

(setq n2p '(you.))
(sdq d '(the this))
(setq ns '(tee tea air forme system general gem awl wall peak speech king

stni sum sur summr recess regency c3 see sea dish itch snow gamble pick
wnlbient interest rest center report port arm median eye people hole pole
poll land telephone foal enema goat kit ghetto information uniform sentence
word squadron fear roll wash speak peek tow twist hiss stay bout abort
see cue dere risk know think enter sin sensor repeat reap row own vote
rum shout get inform enor farce gendre gent cent scent gym aft regent
acba there nothing sub intelligence alliegence mi dinn inn foe owl enemy
maxunition connunicator one two three four five six seven eight nine zero
the that a speaking peaking peeking painng more cubed you she he their
this army arm me our my peep an intel ton wrist airfore door))

(setq pst '(was cubed said told got))
p' (setq modal '(might))

(setq ig '(Weaking peaking peeking pacng noting))
(setq auxverb '(was is am ar be have has))

'p --" '"" , '" e e "" l '''''...,,* -' .. ' " - -" . . .", .".'...- -..... ,...'''' ''' '. . ,,--.-. ,-. .' - ." . . ." "
I -p : " i

"
' 7 ' 1 - : , :" , " • " * : ,, " " ' ' ' '- .', , . , * - '

(setq v3s '(squadmr: gerts dishes issues iLd±us ew folks foes
communications urits eurich cents speakiMg peag in peeking is us army has))

(setq vpL2s '(ae))
(setq prep '(to as af'er about out in into or down))
(setq ord'0)
(setq poss '(their my our))
(setq be '(was is am are be))
(setq conj '(or nor and))
(setq that..ornp '(said told krow))
(seta to._beess_.n£cornp'0)
(setq propnoun '(mi cuba intel there))
(setq that '(that))
(setq sentsubj '(is))
(setq unit '(cents cent ton))
(setq n3p '(tee tea air force system general gem awl wall peak speech king

staff sum sun summer recess regeucy c3 see sea dish itch snow gamble pick
ambient interest rest center report port arm median eye people hole pole
poll land telephone foal enema goat kit ghetto information uniform sentence
word squadmrn fear roll wash speak peek tow twist hiss stay bout abort
see cue dare risk know think enter sin sensor repeat reap row own vote
run shout get inform gents dishes issues itches ewes folks foes cornmunications
units eunids error farce gendre gent cent scnt gym aft regent cuba there
nothing sub intelligence alliegence mi dinn inn foe owl eremy anmmunition
com icator the cents a speaking peekilg peaking pacing more cubed she
he their they this army peep an intel wrist airforce door))

(setq indef '(all a an))
(setq npl '(gents dishes issues itches ewes folks foes comrmunications units

eurichs the cents all some you they us our my we ammunition))

(setq pres '(tee tea air force system general gem awl wall peak speech
king staff sum sun summer recess regency d3 see sea dish itch snow gamble
pick ambient interest rest center report port arm median eye people hole
pole poll land telephone foal enema goat kit ghetto information uniform
sentence word squadron fear roll wash speak peek tow twist hiss stay bout
abort see cue dare risk know think enter sin sensor repeat reap row own
vote run shout get inform gents dishes issues itches ewes folks foes crnunications
units eunichs to err cents want speaking peeking pacing wrist airforce
door is noting am us army are peep intel agree have know has))

(setq neg '(nor no noting))
(setq v..3s '(fear roll wash speak peek tow twist hiss stay bout abort see cue dare risk kno* think ee
(setq vi3s '(was))
(setq pronoun '(that more you she he their they this nothing me our my

we army))
(setq adverb '(all some more nothing))
(setq dim'()
(setq to '(to))
(setq how')
(setq no.subj '(want said told))
(setqtne 'Wo)

- ' ,.(setq quant '(one two three four five six seven eight nine zero us no))
(setq conpadv '(such))]

(voedict)
(terpr)

(princ 'Vocdict has been loaded and exea.ted.D(terpr)

. •- o~ S

*diciory for spexexsys

* (defun initvocab0
(pMg()

. (setq featureset '(all fpunct fpunc noun n-Ip det wh trnsls future er
verb vis vspl adj reipren cnmzuna have do for inf-mrnp toJles-rf-comp
two-o.bj name variable than. quantifier be-cornp of rngstart n2p def
ris past modal ing auxverb v3s vpL2s prep ord pass be aonj that-crnp
to beJ InLMP proproun that senrsuj Ani r3p indef npl. pres
neg v- v 13s pronoun aiverb dim to how na...subj tim e quant compadv))

(setq not! eat-set '(qp q p a v np s ap trace ffan-cormp poss.np and- pasive

npiuterance inf prog predp part copula per! whEcomp pp-uttere
ynquest ded imperative relprnnp cmp...s relative possesive
gp major pp aux vp binder sec))]

(terpe)
(pninc 'I) ctspxs has been loaded and exeaited-D(texpr)

.7- .- C-7m. %. -P-

APPENDIX B

A SAMPLE RUN OF THE SPEREXSYS

-. .. - - , , • g -

--4

B. A Sample Run of the SPEREXSYS

This is a sample SPEREXSYS run of the recognition of

the sentence: "The peak got snow." Comments are included on

the listing to assist the reader in understanding it. An

analysis of this run, and a discussion of what it

demonstrates about the performance of the SPEREXSYS, is

presented in the "Test Results and Conclusions" portion of

the "Test Number One" section in chapter IV.

An explanation of how the simulated input from the

Voice Decoder was chosen is described in chapter IV.

..,

-". . ;"4"" - "" . , °""" ."" "'''''' - "" . " -'".-."' i " ""," " """ " ' -"" -""-""' '" i- .. ' " " "

1NOTE TO THESIS READER:

THIS LISTING IS THE ACTUAL SCRIPT LISTING OF THE RUN FOR TEST
NUMBER ONE. IT HAS BEEN EDITED IN THAT:

1. ALL VERTICAL BARS HAVE BEEN REM OVED FROM THE FILE
WHICH WERE INSERTED B3Y THE LISP SHELL DURING THE
THE RECEPTION OF INFORMATION FROM THE DEC-10 (THE
ENGLISH PARSER). THIS WA S D ONE ONLY TO M AKE THE

~~LISTING M ORE REA DA BLE.

Z CARRIAGE RETURNS HAVE BEEN INSERTED -. ERY 80 CHARACTERS

IN THOSE LINES W HICH EXCEEDED 80 CHARACTERS. THIS WAS
NECESSA RY BECAUSE THE PRINTER WHICH PRINTED THIS FILE
DOES NOT HAVE A WRAP AROUND FEATURE AND THE LETTERS
BEYOND THE 80'S WERE GETTING OVERPRINTED AT THE END OF THE
LINE.

3. COMMENTS HAVE BEEN ADDED TO THE SCRIPT AFTER THE RUN IN
ORDER TO ASSIST THE READER IN UNDERSANDING THE RUN.
THEY ARE ALL IN ALL CAPITAL LETTERS AND ARE ENCLOSED IN
BRACES SUGCH AS THIS ONE.

Saipt stre on W ed Jul 13 18:06:4,. 1903
W a-ning., no acorn to tty thus no job mniml in this shell...

Frem= Lisqp, Opus 36
-> oad 'sp)

-'A

"*

NUBE OE.I.HS EE EIEDINTHT

Li ..- P *-.-.°oV . .

r THE USER UTTERED (SIMULATED) SENTENCE WAS:

'" "'THE PEAK GOT SNOW."

REFER TO CHAPTER FOUR, TEST NUMBER ONE FOR FURTHER DETAILS.

9 Welcome to the SPoken English Recogrition EXpert SYStem '

(SPEREXSYS) **

Please reedy the M ine English Parser and the AFIT Acoustic analyzer.
W hen they have been readied, input the device l.D. of the
English Parser. It should be of the following forr /dev /ttyi7

> /dev/tyl2

THE PROMPT '> "WILL APPEAR EVERY TIME THE SPEREXSYS REQUESTED
INPUT FROM THE USER. I

Control hbs now been turned over to the seniantic arialyzer.
This is the highest level of decision making in the speech recognition proess.
In onrder to initialize the systemn error pareneter3, please answer the following questions.

How mny words deep will the A coustic A nalyzer have to go in order to
guarantee that the correct word will be reog .ze (Normally this is 13).
> 2 SEA RCHD EPTH = 2

W hat is the miiu acceptable average prmbabilty of correctness for the last
thre words in a string? (Normally this is .75).
> .75 [A CCEPrTHRESH =.75

-a

a-,, -,, '''''' ' -,-,- '2'. ", ". ." - .". "'"""""' ' , "'' ,' . .-. .• ' ,-."." ". . ".", . .". ,
-a r , r '- - ' , 4 + % % % " _, . ' '. .- - ' ' -. . - - ' ' ' ' ' ." - . " •. " .

Voc.dict ha been loaded and executed.

D icLspxs has beer loaded ard executed.

On extir'g forrnnxg: rxgslt = ((1000 0 (all)))

0 utput from epfe to voice decoder follows:
Please type itn the voice decoder's resporse to the fcllowirg next-guess-request
Remember to use the foilcwirg format
(stringnurn (dictnamel (tim1 Iirn2) prcb)(dictrare2 (tim1 tin2) prob)...)

Possible words for voioe decoder to choose from are:
ALL WORDS

Next-guess-re (1000 0 (all))
I I I I LEGALGRAMMARTYPESOFTHENEXT WORD

I I I APPROXIIATE START TIME OF NEXT WORD
STRING NUMBER

> (1000
(the (0 15) .95)
(a (0 15) .84)

. (they (0 15) .52))

(a (1) .84) [PROBABILITY OF LIKELIHOOD THAT THE W ORD "they'W A S THE
I USER'S INTENDED NEXT WORD.
I [TERMINATION TIME FOR THEW WORD IN THE INPUT UTTERANCE.

START TIME FOR THE WORD IN THE INPUT UTTERANCE.

This cndudes output (next-guess-requests) from the eple to the voice decoder.

Beore entering deopwds wordgst = ((000 (the (0 15) 0.95) (a (0 15) 0.84)
(they (0 15) 0.52)))

On exiting dectopwords topwordlst = ((1000 (the (0 15) 0.951875) (a (0 15) 0.8
46) (they (0 15) 0.538)))

After edting startnsts: stringlist= ((1003 (they (0 15) 0.538)) (1002 (a (0 1
6) 0.846)) (1001 (the (0 15) 0.951875)))
After exiting kIawsts: stringlist = ((1003 (they (0 15) 0.b38)) (1002 (a (0 1
5) 0.846)) (1001 (the (0 15) 0.951875)))

To 9,mrnize the above strngist, the following strings are still active

they I ALL THREE INPUT WORDS SURVIVED (EVEN THOUGH SEARCHDEPTH = 2)
a ONLY BECAUSE FOR THE FIRST WORD IN A SENTENCE, SEARCHDEPTH SQUARED
the (IN THIS CA SE 4) SURVIVORS ARE A LLOW ED.

Data from epfe to english parser follows
gol([they, pause]).

LINE HIT CAUSES ACTUAL DEC-10 OUTPUT TO BE IGNORED.
THISWILL NECESSITATE RETRYING THE DATA EXCHANGE
BETWEEN THE VAX AND THE DEC-10 AT THE END OF THIS ONE.

,S"

Data from epre to erglish parser follows
N gol([a4pause]).

i [[wonj]

[posive]I
[orni] I

I THIS IS ALL BEING IGNORED DUE TO THE LINE HIT
[verb]i DESCRIBED ABOVE.

* ~[pos~ie]9
I

]4
yes

((con) (quant) (ora) (than) (quant) (adj) (adj and not noun) (than) (quant)
(noun and not npl) (noun and npl) (noun and not npl) (than) (quant))

Data from epfe to english parser follows:
gol([the, pause]).

((1oni) (quant) (ord) (than) (quant) (adj) (ad and not noun) (than) (quant)
(noun and not npl) (noun and npl) (noun and not npl) (than) (uant)) (0

S]

*(eprslst is ar follows.)

((1001 (c nj) (quant) (or) (than) (qunt) (al) (a j and not noun) (than) (qu
nt) (noun and not npl) (noun and npl) (noun and not npl) (than) (quant)) (10C(coni) (quant) (aid) (than) (quant) (a~i (ab and not noun) (then) (quant) (no

-. un and not npl) (noun and npl) (noun and not npl) (than) (quant)) (1003. 1))

Would you like to try the EP interfa again?
(r- rerun i -new instm g -keep going)

> r I BECAUSE OF LINE HIT ABOVE, WE NEED TO RERUN THE ENTIRE DATA EXCHANGE.

Data from epfe to english parser follows
gol([the.paue]).

((cN) (poesive) (oonj) (verb) (posseave)) THIS TIME IT GOT IT.

Data from epfe to english parser follows
gol([a pause]).

, " *

A -. '

((conj) (quant) (orad) (thar) (quant) (adj) (adj and rot ncun) (thar) (qua.t)
(noun and not npl) (noun and npl) (noun ard not npl) (than) (quant))

Data from epfe to erglislh parser follows
gol([the, puse]).

yes

((con) (quant) (ord) (than) (quart) (adj) (adj and not noun) (than) (quant)
(noun and not npl) (noun and npl) (noun and not npl) (than) (quant))

(epreslst is as follows:)
((1001 (conj) (quant) (ord) (than) (quant) (adj) (adi and not noun) (than) (qua
nt) (noun and not npl) (noun and npl) (noun and not npl) (than) (quant)) (1002
(conj) (quant) (ord) (than) (q-i't) (adj) (adj and not noun) (than) (quant) (no
un and not npl) (noun and npl) (noun and not npl) (than) (quant)) (1003 (conj)
(posesive) (tonj) (verb) (possesive)))

Would you like to try the EP interface again?
(r - rerun; i - new instrs; g - keep going)
>g I THIS TIME THE ENTIRE DATA EXCHANGE WENT WELL, SO THE RUN WILL

CONTINUE.

_On exiting formnLxgs nxgslst = ((1003 15 (con) (possesive) (oon) (verb) (poss
'$7 euve)) (1002 15 (corl) (quant) (ord) (than) (quant) (adj) (adj and not noun) (

than) (quant) (noun and not npl) (noun and npl) (noun and notnpl) (than) (quan
t) (1001 15 (conj) (quant) (ord) (than) (quant) (adj) (adj end not noun) (than
) (quant) (noun and not npl) (noun and npl) (noun and not npl) (than) (quant)))

Output from epfe to voice decoder follows
Please type in the voice decoder's response to the following next-guess-request
Rernmber to use the following format-
(strinnum (dcLnarael (timi timn2) prob)(dictname2 (timl tim2) prub)...)

Posible words for voice decoder to choose from am:

or nor and tee tea air force system general gem awl
wall peak speedi king staff sum sun sumrmer recess regency c3
w"e sea dish itch snow gamble pick ambient interest rest center
report port arm median eye people hole pole poll land telephone
foal enerra goat kit ghetto information uniform sentence word squadron fear
roll wash speak peek tow twist him stay bout abort see
cue dare isk know think enter an sensor repeat map row

* own vote nm shout get inform to err was want speaking
Spe king peeking parng cubed said told wrist airforce door is am

army are be peep intel agree have got see know has

NTOTAL NUMBER OF WORDSHAS BEEN REDUCED FOR THIS OPTION FROM 200 TO 110

NOTE - FOR THIS SET OF NEXT-W ORD-LEGAL-FEATURES, THE VOCABULARY W HICH
THE VOICE DECODER W ILL HAVE TO CONSIDER IS REDUCED B ABOUT HALF.

! -

o ..

Next-guess-request = (1003 15 (conj) (possesive) (cotj) (verb) (possesive))
> (1003
(peak (15 35) .95) 'Peak'ard "peek" A RE A COUSTICA LLY IN DISTIN\ UlSHABLE,
(peek (15 35) .95) HENCE, THEY BOTH HAVE IDENTICAL PROBABILITIES OF .95.
(repeat (5 35) .73))

Please type in the voice decoder's resporse to the following rext-guess-requesL
Remember to use the followirg format
(stringnum (dicinarnel (timl tirn2) prob)(dict.rame2 (tim tir2) prob)...)

Possible words for voice decoder to choose from are:

or nor and fiece peachy recent naughty thin big ambiguous dizzy
cant-el intelligent medium round greet short commurist right wrong speaking peaking
peeking paing fur more noting gents dishes issues itches ewes folks
foes comrmuniosatiorns units eurichs amm-unition cents tee tea air force systemn
general gem awl wall peak speech king staff sum sun summer
res regency c3 e sea dish itdc snow gamble pick ambiert
interest rest center report port arm median eye people hole pole
poll land telephone foal erema goat. kit ghetto information uniform sentence
word fear roll wash speak peek tow twist hiss stay bout
abort see cue dare risk know think enter sin sensor repeat
rep row own vote run shout get inform error farce gendre
gent cent scent gym aft regent cuba there nothing sub intelligence
elliegence rA fnn inn foe owl enemy comrnunicator wrist airfore door
peep intel one two three four five six seven eight nine
-z us

TOTAL NUMBER OF WORDS HAS BEEN REDUCED FOR THIS OFrION FROM 200 TO 156

THIS TIME THE VOCABULARY CHOICES WERE ONLY RFDUCED BY ABOUT 1/4.

Next-guess-request = (1002 15 (conj) (quant) (ord) (than) (quant) (adj) (adj an
d not noun) (than) (quant) (noun and not npl) (noun and npl) (noun and not npl)
(than) (quant))

> (1002
(peek (15 35) .95)
(peek (15 35) .95)
(repeat (5 6) .73))

Plere type in the voice decoder's response to the following next-gues-reque-t.
Remember to use the following format
(stringnum (dictnamel (timi tir2) prob)(dictname (timi tirm2) prob)...)

Posible wards for voice decoder to choose from am

or nor and fierce peachy recent naughty thin big ambiguous dizzy
central intelligent medium round green short communist right wrong speaking peakingpeeking paing fun more noting gents dishes issues itches ewes folks

foes conmunicetions units eunidrs ammunition cents tee tea air force system
general gem awl wall peak speech king staff sum sun summer
iom regency d3 see sea dish itch snow gamble pick ambient
intert rest center report port arm median eye people hole pole
poll land telephone foal enema goat kit ghetto information uniform sentence
word fear roll wash speak peek tow twist hiss stay bout
abort see cue dare risk know think enter sin sensor repeat
reep row own vote run shout get inform error fame gendre
gent cet scent gym aft regent cuba there nothing sub intelligence

"" ".-.:.,, , ., ...: o. .. -,.- .-'.:..?.. '. .. .' -'. .--. . .-.--. - -."- * * * * ** r **'-'. - -. " "".- ,-...... "-.... . . ~ K" ., .- .-." - "

., -.- ., . . % " . : ! '.. .
. . . . - . ' ' . : . '

: " . ' " . . - -- - " -. . . -. , .. = , .

alliegence mi dinn inrn foe owl enemy commuticator wrist airforce door
peep intel one two three four fEve six seven eight rine
zero us

TOTAL NUMBER OF W ORDS HAS BEEN REDUCED FOR THIS OPTION FROM 200 TO 156

Next-guess-request = (1001 15 (cnnj) (quant) (crd) (tliar) (quant) (adj) (adj an
d not nour.) (than) (quant) (noun and not npl) (roun ard npl) (noun and not npl)
(than) (quart))

> (1001
(peak (15 35) .95)
(peek (15 35) .95)
(repeat (5 35) .73))

This condudes output (next-guess-requests) from the epfe to the voice decoder.

Before entering dectpwds: wordgslst = ((1001 (peak (15 35) 0.95) (peek (15 35)
0.95) (repeat (5 35) 0.73)) (10.02 (peak (15 35) 0.95) (peek (15 35) 0.95) (rep

eat (5 35) 0.73)) (1003 (peak (15 35) 0.95) (peek (15 35) 0.95) (repeat (5 35)
0.73)))

On exiting dectopwords, topwordlst = ((1003 (peek (15 35) 0.9525) (peak (15 35)
0.9525)) (1002 (peek (15 35) 0.9525) (peak (15 35) 0.9525)) (1001 (peek (15 35

) 0.9525) (peak (15 35) 0.9525)))

After exiting startnsts stringlist = ((1009 (the (0 15)0.951875) (peak (15 35
) 0.952)) (1008 (the (0 15) 0.951875) (peek (15 35) 0.9525)) (1007 (a (0 15) 0
5 (they (0 15) 0.538) (peak (15 35) 0.9525)) (1004 (they (0 15) 0.538) (peek (I
5 35) 0.9525)))0 After exiting killowsts: stringlist = ((1009 (the (0 15) 0.951875) (peak (15 35
) 0.9525)) (1008 (the (0 15) 0.951875) (peek (15 35) 0.9525)) (0C? (a (0 15) 0

To smnnarze the above strnngst, the following strings are still active

thepeek !BECAUSE ONLY FOUR STRINGS ARE ALLOWED TO SURVIVE, ALL STRINGS
the peek BEGINNING WITH "they" (THE LOWEST PROBABILITY THIRD WORD BACK)
apeek HAVE BEEN KILLED. ALSO, 'hpeeV'WAS ELIMINATED IN THE
apeek DECTOPWDS MODULE (SEE TOPWDLST ABOVE).

Data fron epfe to english parser follows-

go1([the pkp=se]).

yeS

((noun) (prep) (verb and ing) (verb and en) (relative) (relpon and wh) (that
) (relpron..np) (oni and not andc) (comma) (than) (quant) (det and not that) (o
) (conD (verb) (powesive))

Data from eple to english parser follows-
gol([the, peek pae]).

((noun) (prep) (verb and ing) (verb and en) (relative) (relpron and wh) (that
) (mlpronnp) (onrj and not and) (comma) (than) (quant) (det and not that) (a

-"--4.4 , ,r '-," ." ' ' ,
'

#,.,r - v . . . °- * . -'-' . - %.!

o ."* -t*- *. - . -j

f) (or) (verb) (poesve))

D ata from eple to english parser follows.
go1([la. peak ,Mse]).

yes

((noun) (prep) (verb and ing) (verb and en) (relative) (relpron and wh) (that
) (rdpmn.np) (nonj and not andc) (crm-a) (than) (quant) (det and not that) (o
f) (coq) (verb) (possesive))

D ata from elie to english parser follows-.
gol(I.apeek,paueD.-

yes

((noun) (prep) (verb and ing) (vaerb and en) (relative) (reipron and wh) (that
) (rpronnp) (conj and not andc) (comma) (than) (quant) (det and not that) (o
f) (conj) (verb) (possemve))

(qxmuls is as follow)0 ((008 (noun) (Prep) (verb arid ing) (verb and er) (relative) (relpron and wh) (
tha) (rlpmnnp) (conj and not andc) (c:mnma) (than) (quant) (det and not that
) (of) (aod (verb) (pocesive)) (1007 (noun) (prep) (verb and ing) (verb and
en) (relative) (relpvn and wh) (that) (relpmn.np) (a0nj and not andc) (conm)
(than) (quant) (det and not that) (of) (con) (verb) (possesive)) (1008 (noun)
(pMP) (verb and ing) (verb and en) (relative) (relpron and wh) (that) (reipro

n.np) (coni and not andc) (comma) (than) (quant) (det and not that) (of) (on)
(verb) (ponesive)) (1009 (noun) (prep) (verb and ing) (verb and en) (relative

) (rpmn and wh) (that) (rlpon..np) (conj and nt andc) (cimxn-) (than) (quan
t) (dot and not that) (of) (coj) (verb) (poseive)))

W ould you like to try the EP interface agan?
(r- mr= i - new strs g -keep gong)
> g

On adting formnW nxplst = ((1009 35 (noun) (prep) (verb and ing) (verb and
*a) (relative) (relpron and wh (that) (rMpmn.np) (corj and not andc) (cormn

) (tM) (quant) (det and not that) (of) (cod (verb) (pornaive)) (1008 35 (n
oun) (prep) (verb and Log) (verb and en) (relative) (relpron and wh) (that) (re
Ilpra..np) (cori and not andc) (comma) (than) (quant) (det and rnot that) (of) (c
onj) (verb) (poSnesive)) (1007 35 (noun) (prep) (verb and ing) (verb and en) (r

elative) (repron and wh) (that) (relpronnp) (con and not andc) (conma) (than
) (qtant) (det and not that) (of) (ooWn) (verb) (porsseve)) (1006 35 (noun) (p
rep) (vab and ing) (verb anden) (relative) (relpron and wh) (that) (relprounn
p) (conj and not andc) (cona) (than) (quant) (dot and not that) (of) (onj) (v. . erb) (possesve)))

Output from epge to voice decoder follows
PleIS type in the voice decodm's respone to the following next-guess-request.
Remertm to ue the following formt:

I . , , , , , . , . , ,., ,.

(stringnum (dict.nanel (tirm tin2) prob)(diktname2 (tim1 tirn2) prub)..)

Possible words for voice decoder to chocse frum are:

gents dishes issues itches ewes folks foes commuricatiors uniLs eunici.s error
farce gerdre gent cent scent gym aft regent cuba there ncthr,

. sub intelligence alliegence mi dinn inn foe owl enemy ammurition commuricatorcents as after about out in into an down that or~e

two three four five six seven eight nine zero us the
a this an or nor and tee tea air force sys.em
general gem awl wall peak speech king staff sum sun su =mmner
recess regeny d see sea dish itch snow gamble pick ambient
interest rest center report port arm median eye people hole pole
poll land telephone foal enema goat kit ghetto i-formation uniform senteance

.- . word squadron fear roll wash speak peek tow twist hiss stay
* bout abort see cue dare risk know think enter sir senscr

repeat reap row own vote run shout get inform to err
wes want speaking peaking peeking pacing cubed said told wrist airforce
door is arm army are be peep intel agree have got

• sgee know hes

TOTAL NUMBER OF W ORDS HAS BEEN REDUCED FOR THIS OPtION FROM 200 TO 168

Nect-gum-request = (1009 35 (noun) (prep) (verb and ing) (verb and en) (relat
ive) (relpron and wh) (that) (relprn..np) (conj and not andc) (comma) (than) (q
umt) (det and not that) (of) (conb (verb) (possesive))
> (1009
(out (35 50) .90) 1' Out'and 'got" ARE BEING INPUT W ITH THE SAM E PROBABILITIES
(on (35 50) .75) TO SIMULATE THE CONDITION WHEN THE VOICE DECODER IS UNABLE
(got(30 50) .90)) TO FAVOR ONE OF THEM OVER THE OTHER. I

Pleae type in the voice decoder's response to the following next-gues-request
Remember to use the following format
(stringnum (dicinamel (timi rri2) prob)(dictname2 (timl tirn2) prob)...)

FIbale words for voice decoder to choose from are

gents dishes issues itches ewes folks foes communications units eunichs error
farm gadre gent cent scent gym aft regent cuba there nothing
sub intelligence alliegence mi dinn inn foe owl enemy ammunition communicator
cents as after about out in into on down that one
two three four five sx seven eight nine zero us the
a this an or nor and tee tea air force system
geeral gem awl wall peak speedi king staff sum sun summer

c ragency d3 see sea dish itd snow gamble pick ambient
Interet rest center report port arm median eye people hole pole
poll land telepone foal enerm goat kit ghetto information uniform sentence
word squadron fear roll wash speak peek tow twist hiss stay
bout abort see cue dare risk know think enter sin sensor
repeat reap row own vote run shout get inform to err
was want speaking peeking peeking pacing cubed said told wrist airorve
door is am army are be peep intel agree have got
see know lhm

TOTA .. _OTL NUMBER OFW0RDSHASBEEN REDUCED FOR THIS OPTION FROM 200 TO 168

Next-gue-reque = (1008 35 (noun) (prep) (verb and ing (verb and en) (relat

Sive) (repron and wh) (that) (relpron-np) (conj and not ande) (comma) (than) (q
umt) (dt and not that) (of) (conD (verb) (possesive))

e-.

"- > (1008
(out (3b 50) 90)
(on (35 50) .75)

-'"-.. (got (30 50) .90))

Pleae type in the voice decoder's response to the following next-guess-request.
Rernenber to use Lhe fcf!owirg format
(stringnum (dicinarnel (timi tir 2) prub)(dictname2 (tim tim2) prob)...)

Pcssible words for voice decoder to choose from are:

gents dishes issues itches ewes folks foes comunications units eunichs error
* farce gendre gent cent scent gym aft regent cuba there nothing

sub intelligence alliegence mi dinn inn foe owl enemy ammunition communicator
cents as after about out in into on down that one
two three four five six seven eight nine zero us the
a this an or nor and tee tea air force system
general gem awl wall peak speech king staff sum sun summer
receas regency c3 see sea dish itch snow gamble pick ambient
interest rest center report port arn median eye people hole pole
poll lend telephone foal enema goat kit ghetto information uniform sentence
word squadron fear roll wash speak peek tow twist hiss stay
bout abort see wue dare risk know think enter sin sensor
repeat reap row own vote run shout get inform to err
was want speaking peaking peeking paing cubed said told wrist airforce
door is am army are be peep intel agree have got
see know has

TOTAL NUM BER OF WORD S HA S BEEN RED UCED FOR THIS OPTION FROM 200 TO 168

Next-gus-requt = (100Y7 35 (noun) (prep) (verb and ig) (verb and en) (rMat
ie) (relpron and wh) (that) (relpron..np) (conj and not andc) (cdmma) (than) (q
uant) (dot and not that) (of) (con (verb) (possesive))
> (1007
(out (35 50) .9)
(on (35 50) .75)
(got (30 50) .90))

Pleine type in the voice decoder's response to the following next-gue-request
Rermember to use the following fornat
(stringnur (dictnarnel (Urni tin-2) prob)(dictnane2 (tiril tiri2) prob)...)

Possible words for voice decoder to choose from arm

get' disbe ism itdies ewes folks foes ornmnunications units eunid-s error
fame gende gent cent scent gym aft regent cuba them nothing
sib inteligence alliegence ni dinn inn foe owl enemy ammunilion cor nnunicator
cents a after about out in into on down that one
two three four five six seven eight nine zero us the
a thin an or nor and tee tea air force system
gera gem awl wall peak speedc king staff sum sun summer
rees rency c see sea dish itch snow gamble pick ambient

Snter st ret center report port arm median eye people hole pole
poll laInd telephone fool enema goat kit ghetto information uniform sentence
word squadron fear roll wash speak peek tow twist hiss stay
bout abort see cue dare risk know think enter sin sensor

.; repeat reep row own vote run shout get inforr to err
wa want speaking peeking peeking pacing cubed said told wrist airforce
door is an army ae be peep intel agree have got

ar

see know has

. TOTAL NUMBER OF W ORDS HAS BEEN REDUCED FOR THIS OPTION FROM 200T0 168

Next-guess-request = (1006 35 (noun) (prep) (verb ard ivg) (verb and en) (relat
ive) (relpron ard wh) (that) (relpror.rp) (ornj ard rot andc) (comrra) (than) (q

uant) (det and not that) (of) (cunj) (verb) (posseive))
> (1006
(out (35 50) .90)
(on (35 50) .75)
(got (30 50) .90))

This ondudes output (next-guess-requests) from the epfe to the voice decoder.

Before entering dectopwds wordgslst = ((1006 (out (35 50) 0.9) (on (35 50) 0.7
5) (got (30 50) 0.9)) (1007 (out (35 50) 0.9) (on (35 50) 0.76) (got (30 50) 0.
9)) (1008 (out (35 50) 0.9) (on (35 50) 0.75) (got (30 50) 0.9)) (1009 (out (35
50) 0.9) (on (35 50) 0.75) (got (30 50) 0.9)))

On exiting dedopwords: topwordlst = ((1009 (got (30 50) 0.905) (out (35 50) 0.
90375)) (1008 (got (30 50) 0.905) (out (35 50) 0.903?5)) (1007 (got (30 50) 0.9
05) (out (35 50) 0.90375)) (1006 (got (30 50) 0.905) (out (35 50) 0.90375)))

After exiting startnsts: stbinglist = ((1017 (a (0 15) 0.846) (peek (15 35) 0.9
525) (out (35 50) 0.90375)) (1016 (a (0 15) 0.846) (peek (15 35) 0.9525) (got(
30 50) 0.905)) (1015 (a (0 15) 0.846) (peak (15 35) 0.9525) (out (35 50) 0.9037
5)) (1014 (a(0 15) 0.846) (peak (15 35) 0.9525) (got (30 50) 0.905)) (1013 (th
e5) (0 15)(peek (15 35) 0.9525) (out (35 50) 0.90375)) (1012 (the (0 1
5) 0.951875) (peek (15 35) 0.9525) (got (30 50) 0.905)) (1011 (the (0 15) 0.951

875) (peak (15 35) 0.9525) (out (35 50) 0.90376)) (1010 (the (0 1S) 0.951M75) (
peak (15 35) 0.9525) (got (30 50) 0.905)))

A decision is now being made on the third word from the end of all strings.
The doices are:
(the a)

After exitirg ldllowsts. stringlist = ((1013 (the (0 15) 0.951875) (peek (15 35
) 0.9525) (out (35 50) 0.90375)) (1012 (the (0 15) 0.951875) (peek (15 35) 0.95
25) (got (30 50) 0.905)) (1011 (the (0 15) 0.951875) (peak (15 35) 0.9525) (out
(35 50) 0.90375)) (1010 (the (0 15) 0.951875) (peak (15 35) 0.9525) (got (30 5

0) 0.905)))

To sumnarize the above stringlist, the following strings are still active

the peek out THE STRINGS STARTING WITH THE WORD "a" HAVE BEEN KILLED.
the peek got
the peek out
the peak got

D "ita from epfe to english parser follows:
go l([thepeek out pause]).

Yes
mffn((, r))

%:.

Data f mm epte to englis:h parser follows:
gol([the,peecgo.,pause]).

((corj) (conj) (po-rp) (adverb) (prep) (for and pp) (compadv) (nam-e and not
np) (propnoun) (prep) (det) (rgstart and not (pronouni or det)) (than.-omp) (co

nj and not andc) (conmp-s) (adverb) (pronoun) (prep) (cnnj) (poa...np) (fpunc) (s
ent.subj) (commar) (commua) (cxompadv) (namne and not np) (propnoun) (prep) (det)(
ngstart and not (pr-onoun or det)) (than-comp) (conj and not andc) (comp..s) (pro
noun))

D ata from epfe to english parser follows:
go 1([the, peak,out,pause]).

((ngstart))

D aita from epfe to english parser follows:
go 1([the,peak,got, pause]).

((conj) (conj) (possnp) (adverb) (prep) (for and pp) (cornpadv) (name and no
t nIP) (propnloun) (prep) (det) (ngstart and not (pronoun or det)) (thanLnmp) (c
onj and not andc) (cxomp..s) (adverb) (pronoun) (prep) (conj) (pos.-np) (fpunc)(
sent-subj) (comma) (comma) (compadv) (name anid not np) (propnioun) k*. -ep) (det)
(ngstaxt and not (pronoun or det)) (than..comp) (conj and not andc) (cmp..S p
onoun))

(epresist is as follows:)
((1010 (conj) (conj) (pos...np) (adverb) (prep) (for and pp) (compadv) (name and
not np) (propnoun) (prep) (det) (ngstart and not (pronoun or det)) (than..omp)
(=4x and not ande) (comp.s) (adverb) (pronoun) (prep) (cnj) (poss.np) (f punc

) (sn~sbj)(coma) coma) comadv (num and not np) (propnoun) (prep) (de
t) (ngftat and not (pronoun or det)) (tian...mp) (conj and not andc) (comp..s)
(pronoun)) (1011 (ngstart)) (1012 (coni) (conj) (pom..np) (adverb) (prep) (for
and pp) (cornadv) (name and not np) (propnoun) (prep) (det) (ngstart and not (p
ronoun or det)) (than-.conmp) (conj and not andc) (comp..s) (adverb) (pronoun) (pr
ep) (coni) (pos.np) (f punc) (senitsubj) (comm) (comma) (compadv) (name and no
t np) (propnoun) (prep) (det) (ngstart anid not (pronoun or det)) (than.comnp) (c
onj and not andc) (cornp.) (pronoun)) (10 13 (ngstart)))

W ould you like to try the EP interface agin?
(r- rerun; i -new inr g -keep going)

On e~dtinfoxmnxgs- nxsgt = ((1013 50 (ngptart)) (1012 50 (conj) (cnj (pos
a...n) (adverb) (rep) (for and pp) (compadv) (nam and not np) (pwopnoun) (prep

) (det) (rgstart and not (pronoun or det)) (than.mrnp) (cnj and not andc) (corn
ps) (adverb) 'pronoun) (prep) (cxrj) (poss..np) (sentsubj) (cc mna) (cc rn-a) (cc
mpadv) (name and not np) (propnoun) (prep) (det) (rgstart and not (pronoun or d
et)) (thanrvonp) (conj and not ardc) (cnrnp-s) (pronoun)) (1011 50 (ngstart)) (1
010 50 (conD) (toni) (poss_.p) (adverb) (prep) (for and pp) (compadv) (name and
not np) (prop-ioun) (prep) (det) (rgstart and not (pronoun or det)) (tha-mru np)
(onj ari not andc) (cemp-s) (adverb) (pronoun) (prep) (conj) (po --np) (senL

subj) (oonrma) (cornrna) (ccrnpadv) (naime and rot np) (propncun) (prep) (det) (ngst
art and not (pronoun or det)) (tla-r__rmp) (conj and not andc) (cornps) (pronoun

Output from e)fe to voice decoder follows
Please type in the voice decoder's response to the following next-guess-request
Remember to use the following format
(stringnum (dikt-namel (timI tirr2) prob)(dicnare2 (tLml tim?2) prob)...)

Possible words for voice decoder to choose from are:

tee te air fore system general gem awl wall peak speech
king staff sum sun summer recess regency c3 see sea dish
itch snow gamble pick ambient interest rest center report port aim
median eye people hole pole poll land telephone foal enema goat
kit ghetto information uniform sentence word squadron gents dishes issues itches
ewes folkm foes communications units eunichs error farce gendre gent cent
scant gym aft regent cuba there nothing sub intelligence alliegene mi
dinn inn foe owl enemy ammunition communicator one two three four
five six seven eight nine zero fierce peachy recent naughty thin
big ambiguous dizzy central intelligent medium round green short oommunist right
wrong the that cents all a peaking peeking some more cubed4 ,.hes itches issues you she he their they us this army
my an it-tel we wrist airforce door me our

TOTAL NUMBER OF W ORDS HAS BEEN REDUCED FOR THIS OPTION FROM 200 TO 141

Nedt-guess-request = (1013 50 (ngstart))
> (1013
(foe (50 70) .61)
(snow (50 70) .90)
(zero (50 70) .73))

Please type in the voice decoder's response to the following next-guess-request
Remember to use the following format
(stringnurn (dictnamel (timi tim2) prob)(diciname2 (timl tirm2) prob)...)

Possible words for voice decoder to choose from are:

is such to m after about out in Into on down
the a an tee tea air force system general gem awl
wall peak speech king staff sum sun summer recess regency d3
see sea dish itch snow gamble pick ambient interest rest center
report port anm median eye people hole pole poll land telephone
foal enema goat kit ghetto information uniform sentence word gents dishes
isum itches ewes folks foes units eunichs error farce gendre gent
cent went gym aft regent cuba there sub intelligence alliegene mi
din inn foe cwl enemy ammunition communicator one two three four
five six seven eight nine zero fierce peachy recent naughty thin

% big ambiguous dizzy central intelligent medium round green short communist right
wrong cents all peaking peeking some cuobed dishes itdes issues us
Intel wrist airforce door or nor and that more you she

_ .'-':.:,', .. ',' .. ''..., '''...'''...''.''': ''.. v,. v "4 '"- " " '": ." -" '."" " "-' ' " -" .'- •-" -" ", " -"-..- '."-

he their they this nothing me our my we army

- TOTAL NUMBER OF WORDS HASBEEN REDUCED FOR THIS OPTION FROM 200TO 153

Next-guess-request = (1012 50 (conj) (conrj) (pcss-rnp) (adverb) (prep) (for and
pp) (compadv) (name and not np) (propnoun) (prep) (det) (ngstart and not (prono
un or det)) (than-comp) (conj and not andc) (cornps) (adverb) (pronoun) (prep)
(conj) (posa.np) (sent-subj) (comma) (comma) (compaiv) (name and not np) (propn

,. oun) (prep) (det) (ngstart and not (pronoun or det)) (thanscomp) (con and not
andc) (oonnp.s) (pronoun))
> (1012
(no (55 70) .95) 1"No" IS GOING IN WITH A HIGHER PROBABILITY OF LIKELIHOOD
(snow (50 70) .90) THAN THE W ORD "snow" (WHICH IS THE CORRECT WORD). THIS
(foe (50 70) .81) THIS IS TO SEE IF THE SPEREXSYS CAN PROPERLY APPLY
(zen (50 70).73)) SYNTACTIC CONSTRAINTS TO OVERCOME VOICE DECODER

INACCURACIES.

Pleee type in the voice decoder' s response to the following next-guem-request
Remember to use the following format
(stringnum (dictnamel (tim1 tim2) prob)(dictnarne2 (timro tim;2) prob)...)

Possible words for voice decoder to choose from ar

tee tea air force system general gem awl wall peak speech
king staff sum sun surnner recss regency cd see sea dish
itch snow gamble pick ambient interest rest center report port arm
rrmdian eye people hole pole poll land telephone foal enema goat
kit ghetto information uniform sentence word squadron gents dishes issu itches
ewes folks foes cormunications units eunichs error farce gendre gent cent
scent gym aft regent cuba there nothing sub intelligence alliegence ri
dinn im foe owl eniemy ammunition communicator one two three four
five six seven eight nine zer fierce peachy recent naughty thin "
big ambiguous cizzy central intelligent medium round green short com is right
wrong the that cents all a peaking peeking some more cubed
dishes itches issues you she he their they us this army
my an intel we wrist airforce door me our

TOTAL NUMBER OF WORDS HAS BEEN REDUCED FOR THIS OPITION FROM 200 TO 141

Next-gums-request (1011 50 (ngstart))
> (1011
(foe (50 70) .81)
(saow (50 70) .90)
(zero (50 70) .73))

Pleme type in the voice decoder's response to the following next-gum-request
Renumber to use the following format
(stAtrium (dicnanml (timl timn) prob)(di d wne2 (Umi tim2) prob)...)

Posible words for voice decoder to choose from art
a-,

is such to as after about out in into on down
the a an tee tea air force system general gem awl
wall pek speech king staff sum sun sumner rem regency c3
see -en dish itch sow gamble pick ambient interest rest center
report port an median eye people hole pole poll land telephone
foal enema goat kit ghetto information uniform sentence word gents dishes
is"'s itches ewes folks foes units eunidis error fame gendre gent
cent scent gym adt regent cuba there sub intelligence alliegence mi

"t i' 3. .~." . *
°

* C.. .. " C. .- x . " " . -*. . a." - - .

dinn inn foe owl enemy ammunition communicator one two three four
five six seven eight nine zero fierce peachy recent naughty thn

big ambiguous dizzy central intelligent medium rourd green short communist right
wrong cents all peaking peeking some cubed dishes itches isues us
intel wrist airforce door or nor and that more you she
he their they this nothing me our my we army

TOTAL NUMBER OF WORDS HAS BEEN REDUCED FOR THIS OlTION FROM 200 TO 153

Next-guess-request = (1010 50 (onj) (onj) (pos&snp) (adverb) (prep) (for and
pp) (compadv) (name and not np) (propnour) (prep) (det) (ngstart and not (pmno
un or det)) (than mp) (conj and not andc) (conmps) (adverb) (pronoun) (prep)
(conj) (poss...p) (sen.Lsubj) (comma) (comma) (compadv) (name and not np) (propn
oun) (prep) (det) (rgstart and not (pronoun or det)) (thanU nmp) (conj and not
andc) (comps) (pronoun))
> (1010
(no (55 70) .95)
(snow (50 70) .90)
(foe (50 70) .81)
(zero (50 70) .73))

This concludes output (next-guem-rquests) from the epfe to the voice decoder.

Before entering dectopwds: wordgslst = ((1010 (no (55 70) 0.95) (snow (50 70) 0
70) 0.9) (zero (507 0) 0.73)) (1012 (no (55 70) 0.95) (snow (50 70) 0.9) (foe (
50 70) 0.81) (zero (50 70) 0.73)) (1013 (foe (50 70) 0.81) (snow (50 70) 0.9) (
zero (so 70) 0.73)))

On exitmg decopwords, topwordlst = ((1013 (snow (50 70) 0.905) (foe (50 70) 0

A) After exiting startsts stringlist = ((1025 (the (0 15) 0.951875) (peak (1535

) 0.9525) (got (30 50) 0.905) (snow (50 70) 0.905)) (1024 (the (0 15) 0.951875)
(peak (15 35) 0.9525) (got (30 50) 0.905) (no (55 70) 0.95i875)) (1023 (the (0
15) 0.951875) (peak (15 35) 0.9525) (out (35 50) 0.90375) (foe (50 70) 0.8195)

) (1022 (the (0 15) 0.951875) (peak (15 35) 0.9525) (out (35 50) 0.90375) (snow
(60 70) 0.905)) (1021 (the (0 15) 0.951875) (peek (15 35) 0.9525) (got (30 50)
0.905) (snow (60 70) 0.905)) (1020 (the (0 15) 0.951875) (peek (15 35) 0.9525)
(got (30 50) 0.905) (no (55 70) 0.951875)) (1019 (the (0 15) 0.951875) (peek (

.4 15 35) 0.9525) (out (35 50) 0.90375) (foe (50 70) 0.8195)) (1018 (the (0 15) 0.
9618 7) (peek (15 35) 0.9525) (out (35 50) 0.90375) (snow (50 70) 0.905)))

A deision is now being made on the third word from the end of all strings.
The dioioes are:

s, (peek peak)

After exdbng killowsts stnnghs = ((1025 (the (0 16) 0.951875) (peak (15 35
) 0.9525) (got (30 50) 0.906) (snow (50 70) 0.905)) (1024 (the (0 15) 0.951875)
(peek (15 35) 0.9525) (got (30 50) 0.905) (no (55 70) 0.951875)) (1021 (the (0
15) 0.951875) (peek (15 35) 0.9525) (got (30 50) 0.905) (snow (60 70) 0.905))

(1020 (the (0 15) 0.951875) (peek (15 35) 0.9525) (got (30 50) 0.905) (no (55 7
0) 0.951875)))

To summarize the above stringlist, the following strings are still active:

the peak got slow
the peek got no
the peek got snow A
the peek got no

A nd the following sentene are to be forwarded to the senmnntic analyzer

j, °- *.- .

-4"

the peek got SINCE THE ENGLISH PARSER TOLD US THAT THESE WERE COMPLETE
:-. - -. thepeakgot SENTENCES (AND THEY ARE), THEY WILL BE FORWARDED TO THE

SEMANTIC ANALYZER AS CANDIDATE SENTENCES FROM WHICH THE
SEMANTIC ANALYZER WILL HAVE TO CHOOSE.

Data from epfe to erglish parser follows:
go1([the,peakgotsnow,pause]).

((con) (noun) (prep) (verb and irng) (verb and en) (relative) (relpron and wh
) (that) (relpron.np) (conij and not andc) (conma) (than) (quant) (det and not t
hat) (of) (cod/) (to) (poss np) (adverb) (prep) (for and pp) (compadv) (name an
d not np) (propnoun) (prep) (det) (rogstart and not (pronoun or det)) (than.comp
) (conj and not andc) (comps) (adverb) (pronoun) (prep) (coj) (poss.np) (fpun
c) (senLsub) (oomma) (commrna) (cornpadv) (name and not rp) (propnoun) (prep) (d
et) (ngstart and not (pronoun or det)) (tan.xmp) (oonj and not andc) (comps)
(pronoun))

Data from epfe to english paer follows:
_ gol([thepeakgotno, pause]).

((toni) (possesive) (conj) (posesive))

%, %

Data from epfe to english parsr follows:
gol([thepeek gotsnow, puse]).

s li yes

((cord (noun) (prep) (verb and ing) (verb and en) (relative) (relpron and wh
) (that) (relpron.n) (conj and not andc) (cOmMa) (than) (quant) (det and not t
hat) (of) (on) (to) (poss-np) (adverb) (prep) (for and pp) (compedv) (name an
d not np) (propnoun) (prep) (det) (ngstart and not (pronoun or det)) (than.comp
) (coni and not andc) (comp.s) (adverb) (pronoun) (prep) (conj) (pos..np) (fpun
c) (suLsubj) (cormna) (comma) (compadv) (name and not np) (propnoun) (prep) (d
et) (ngpart and not (pronoun or det)) (timn..womp) (conj and not andc) (comps)
(pmnoun))

Data from epfe to english parser follows
" " gol([the, peek got, nopause]).

.°

((con (possesive) (con) (possesive))

..

(epresist is as follows)
((1020 (conj) (possesive) (oonj) (possesive)) (1021 (oorj) (noun) (prep) (verb
and ing) (verb and en) (relative) (relpron and wh) (that) (relpror.p) (ccrj an
d not andc) (comma) (than) (quant) (det and rcot Uat) (of) (conj) (to) (poss._np
)(adverb) (prep) (for and pp) (compadv) (name and not np) (propnoun) (prep) (d
et) (ngstart and not (pronoun or det)) (thancornp) (conj and not andc) (comps)
(adverb) (pronoun) (prep) (corj) (pos-.p) (fpnc) (sentsubj) (oomma) (comma)
(compadv) (name and not np) (propnou) (prop) (det) (r ad not (pronoun

or det)) (than-c.wmp) (con-j and niot andc) (comps (pronoun)) (1024 (conj)(ps
esive) (conj) (possesive)) (1025 (conj) (noun) (prep) (verb and irg) (verb and
en) (relative) (relpron and wh) (that) (relpron.np) (conj and not andc) (comrna)
(than) (quant) (detand not that) (of) (cotj) (to) (pcm..p) (adverb) (prep) (

for and pp) (cvmpadv) (name and not np) (prupnour) (prep) (det) (ngst&t and no
t (pronoun or det)) (thanr-rp) (aoj and not andc) (comps) (adverb) (pronoun)
(prep) (conj) (pows-.np) (fpunc) (serLsLbj) (comma) (co -na) (compadv) (name an

d not np) (propnoun) (prep) (det) (ngstart and not (pronoun or det)) (than..omp
) (tonj and not andc) (comp-s) (pronoun)))

Would you like to try the EP interface again?
(r- rerum; i - new irist g- keep going)

,. ,.> g

On exiting fornnWg nxgslst = ((1025 70 (oonj) (noun) (prep) (verb and ing) (v
erb and en) (relative) (reipron and wh) (that) (relpron..np) (conj and not andc)
(cornma) (than) (quant) (det and not that) (of) (con) (to) (poss..np) (adverb)

(prep) (for and pp) (compadv) (name and not np) (propnoun) (prep) (det) (ngstar
t and not (pronoun or det)) (than..comp) (conj and not andc) (cornps) (adverb) (
pronoun) (prep) (conj) (poss-np) (senLsubj) (comma) (oomma) (compadv) (name an
d not np) (propnoun) (prep) (det) (ngstart and not (pronoun or det)) (than.. nmp
) (oonj and not andc) (comps) (pronoun)) (1024 70 (aonj) (possesive) (con) (p
osesive)) (1021 70 (canj) (noun) (prep) (verb and irn) (verb antl en) (relative
) (relpron and wl) (that) (relpun._np) (oonj and not andc) (comma) (than) (quan
t) (det and not that) (of) (conj) (to) (poss..np) (adverb) (prep) (for and pp) (
eornpadv) (name and not np) (propnoun) (prep) (det) (ngstart and not (pronoun or
det)) (than..nomp) (conj and not andc) (comp.s) (adverb) (pronoun) (prep) (aonj

) (poss..np) (sentLsubj) (comma) (comma) (compadv) (name and not np) (propnoun)
(prep) (det) (ngstart and not (pronoun or det)) (than.comp) (con and not andc)
(cDmnp.s) (pronoun)) (1020 70 (conj) (possesive) (conj) (possesive)))

Output from epfe to voice decoder follows:
Pleae type in the voice decoder's response to the following next-gues-request.
Remember to use the following formnat
(stringnum (dict.narnel (tim1 tim2) prob)(dicdnarne (tim1 tim2) prob)...)

Possible words for voice deoder to dioose from am

squadron fear roll wash speak peek tow twist hiss stay bout
abort cue dare risk know think enter sin sensor repeat reap
zow own vote run shout get inform communications peep speadng pacing
mid told got is such to as after about out in
into on down the a an tee tea air force system
general gen awl wall peak speedh king staff sum sun summer
recass regency cB see sea dish itch snow gamble pid ambient
intst rest oiter report port arm median eye people hole pole
poll land telephone foal enema goat kit ghetto information uniform sentence

' word gents dishes issues itches ewes folks foes units eunichs error
farme gendre gent cent scent gym aft regent cuba there sub
intelligence alliegence mi dim inn foe owl enemy ammunition communicator one
two three four fIve six seven eght nine zero fierce peaiy

.7r

recent naughty thin big ambiguous dizzy central intelligent medium round green
short communist right wrung cents all peaking peekirg some cubed dishes
itcies issues us intel wrist airforce door or nor and that
more you she he their they this nothing me our my
we army

TOTA L NUM BER OF W ORD S HA S BEEN RED UCED FOR THIS OPTION FROM 200 TO 189

Next-guess-request = (1025 70 (conj) (noun) (prep) (verb and irg) (verb and en)
(relative) (relpron and wh) (that) (relpronnp) (conj and not andc) (comma) (t

ban) (quant) (det and not that) (of) (conj) (to) (posesr.p) (adverb) (prep) (for
and pp) (compadv) (name and not np) (prcpnoun) (prep) (det) (ngstart and not (

pronoun or det)) (thancormp) (canj and not andc) (comrp.s) (adverb) (pronoun) (p
rep) (00nj) (pcs.np) (sentaubj) (comma) (comma) (cornpadv) (name and not np)(
propnoun) (prep) (det) (ngstart and not (pronoun or det)) (than.comp) (conj and
not andc) (comp-s) (pronoun))

> (12
(fpunct (70 100) .90)) I WHEN THE VOICE DECODER SENDS AN 'Tpunct", THIS

SIGNALSTHAT A POSSIBLE SENTENTLAL PAUSE HAS
OCCURRED IN THE INPUT STRING. WHEN ONLY AN
'punc" IS SENT (AS IN THIS CASE), IT SIGNALS
THAT THE SPEAKER/USER HAS QUIT SPEAKING (NO
OTHER WORDS FOLLOW).

Pieese type in the voice decoder's response to the following next-guesm-request.
Reiember to use the following formt
(stringnum (dictnarrel (timl tiri.) prob)(dictname2 (tim1 tim2) prob)...)

o Possible words for voice decoder to choose from are:

or nor and

TOTAL NUMBER OF W ORDS HAS BEEN REDUCED FOR THIS OPTION FROM 200 TO 3

Uext-gue-request = (124 70 (cnj) (poesve) (conj) (possive))
> (1024
(tpund (70 100) .90))

Please type in the voice decoder's response to the following next-gue-request.
Rerrember to use the following format
(stringnum (dicnarmel (tim timi2) prob)(dictnarne2 (timi tim2) prob)...)

Ilble words for voice decoder to choose from are:

quadron fea roll wah speak peek tow twist hiss stay bout
abort ue dare risk know think anter an sensor repeat reap
row own vote run shout get inform communications peep speaking paing
said told got is such to as after about out in
Into on down the a an tee tea air force system
general gem awl wall peak speech king staff sum sun sumer
mrom regency cO see sea dish itch snow gamble pick ambient
interest rest center report port arm median eye people hole pole
poll land telephone foal enema goat kit ghetto information uniform sentence
word gents dishes issues itches ewes folks foes units eunidis eror
face gandre gent cent scent gym aft regent cuba there sub
intelligence alliegenoe m dinn inn foe owl enemy ammunition communicator one
two three four five six seven eight nine zero fierm peachy
recent naughty thin big ambiguous dizzy central intelligent medium round green
short corminunist right wrong cent all peaking peeking some cubed dishes

4,

,: ,: ;,, ,.,. -€-,:,,. %,-.. ,. _-..-- .-.. -.

,*. -. -

4. itches issues us intel wrist airfome door or nor ard that
' . more you she he their they this nothirg me our my

we army

TOTAL NUMBER OF WORDS HAS BEEN REDUCED FOR THIS OPTION FROM 200 TO 189

Next-guess-request = (1021 70 (conj) (noun) (prep) (verb and ing) (verb and en)
(relative) (relpron and wh) (that) (relprrr-np) (conj and not ando) (comma) (t

han) (quant) (det and not that) (of) (conj) (to) (poss.np) (adverb) (prep) (for
and pp) (cvmpedv) (name and not np) (propnoun) (prep) (det) (ngstart and not (
pronoun or det)) (than-comp) (conj and not andc) (cormpis) (adverb) (pronoun) (p
rep) (conf) (poss--np) (senLsubj) (coona) (cormm) (cnmvadv) (name and not np) (
propnoun) (prep) (det) (ngstart and not (pronoun or det)) (thar..iomnp) (con and
not andc) (mornp.s) (pronoun))
> (1021
(punct (70 100) .90))

Please type in the voice decoder's response to the following next-guess-request
Remember to use the following format
(stringnum (dictnamel (timi tim2) pmb)(dicnarmne (timl Um2) prob)...)

Possible words for voice decoder to choose from arm

or nor and

TOTAL NUMBER OF WORDS HAS BEEN REDUCED FOR THIS OPTION FROM 200 TO 3

Next-guesm-request = (1020 70 (coni) (possesive) (conD) (possesive))~> (1020

(fpuact (70 100) .90))

This condudes output (next-guess-requests) from the epfe to the voice decoder.

Before entaing dectopwdg, wordgslst = ((1020 (fpunct (70 100) 0.9)) (1021 (fpu
nct (70 100) 0.9)) (1024 (fpunct (70 100) 0.9)) (1025 (fpunct (70 100) 0.9)))

On eadting dectopwords topwordlst = ((1025 (fpunct (70 100) 0.9075)) (1024 (fp
unct (70 100) 0.9075)) (1021 (fpunct (70 100) 0.9075)) (1020 (fpunct (70 100) 0

After exitimg samtnsts stringlist= nil

Epfe done. Returning to semantic analyzer.

- (from mod2 : sentoutf ((the (0 15) 0.951875) (peak (15 35) 0.9525) (got (30 50
0-) 0.5) (mow (50 70) 0.905) (fpunct (70 100) 100.9))
and seitatst = ((1025 (the (0 15) 0.951875) (peak (15 35) 0.952) (got (30 50

) 0.90M) (snow (50 70) 0.905) (fpunct (70 100) 100.9)) (1021 (the (0 15) 0.9518

100) 100.9)) (1010 (the (0 15) 0.951875) (peak (15 35) 0.9525) (got (30 50) 0.9
4,, 405)) (1012 (the (0 16) 0.951875) (peek (15 35) 0.9525) (got (30 50) 0.905))))

1-

A.

++' .,. ..- ,Speraqcss outpt to user .",

-the peak gotsnow. ITHIS IS THE SPER-XDSS BEST GUESSAST0 THE IDENTITY

OF THE UTTERED SENTENCE. IT IS CORRECT.

Is the above sentence correct? (Type "(yes)" or "(no)")
> (no) I THE ANSWER TO THIS QUESTION SHOULD BE (yesT". THE ANSER "(no)"

WAS ENTERED IN ORDER TO DEMONSTRATE THE ABILITY OF THE SPEREXSYS
TO OFFER MORE THAN ONE PROBABLE SENTENCE IDENTITY AND THEN TO
RECOVER IF NONE OF THESE ARE CORRECT.

(from ood 2: sentout = ((the (0 15) 0.951875) (peek (15 35) 0.9525) (got (30 50
S0.905) (snow (50 70) 0.905) (fpunct (70 100) 100.9))

and sentstlst = ((1021 (the (0 15) 0.951875) (peek (15 35) 0.9525) (got (30 50
) 0.905) (snow (50 70) 0.905) (fpurnct (70 100) 100.9)) (1010 (the (0 15) 0.9518
75) (peek (15 35) 0.9525) (got (30 50) 0.905)) (1012 (the (0 15) 0.951875) (pee
k (15 35) 0.9525) (got (30 50) 0.905))))

Spermesys output to user-
the peek got snow.

Is the above sentence correct? (Type "(yes)" or'(no)')
> (no)

0 (from nod 2 sentout = ((the (0 15) 0.951875) (peak (15 35) 0.9525) (got (30 50
) 0.905))
and sentstls = ((1010 (the (0 15) 0.951875) (peak (15 35) 0.9,&5) (got (30 50

) 0.905)) (1012 kthe (0 15) 0.951875) (peek (15 35) 0.9525) (got (30 50) 0.905)

Speremxsys output to use.
the peak got

Is the above sentence on'vc? (Type "(yes)" or "(no)")
> (no)

(from mod sentout = ((the (0 15) 0.951875) (peek (153 5) 0.9525) (got (30 50
) 0.90))
md enA st = ((1012 (the (0 15) 0.951875) (peek (15 35) 0.9525) (got (30 50
) 0.90))))

Sperxsa output to uer
the peek got

ls the above sentenee conect? (Type "(yes)" or "(no)")
> (no)

%4

'4:

I'm sorry, but the SPEREXSYS has failed to properly interpret this last
sentence.

Pease repeat the sentence givirg particlar care to the pmonundation
of the words which wee improperly identified.

Hit the return key after you have done so.

(fmm reiit acetdi = 0.7 and seamdep = 4) ERROR MARGINS ARE
EXPANDED TO GIVE
THE SYSfEM A BETTER
CHANCE TO FIND THE.
RIGHT SENTENCE THE
ON THE NEXT TRY.

Vor-dict, has been loaded and exec.uted.

S Di n.spxs has been loaded and executed.

On emio,,, g ommxj: n.,dA= ((1000 0(al)))

Output from epfe to voice decoder follow pR

Please type in the voice decoder's response to the following next-guess-request.
Remember to use the following forma
(abngum (ditnme (timl tin) pmb)(ditane- (timl tim2) prob)...)

Possible words for voice decoder to choose frm.a
A LL W ORD S

AND IT ALL STARTSCALL OVER AGAIN.

V R

.............................. *.~.*.

p
*4

.1
..1~

*1

,1

APPENDIX C

0 USER'S MANUAL FOR THE SPERXSYS

* S.

ii

-S.

.4.

-4

4.

4.

-4

4.4~ .-...-
.1
~.1

* q

N

A

C. User's Manual for the SPEREXSYS

The following instructions will assist the user in

setting up and operating the SPEREXSYS. They are incomplete

in that a thorough understanding of the concepts and

algorithms embodied in the SPEREXSYS are necessary in order

to properly exercise the system.

Set Up

Section A of Chapter IV explains the reasons for the

following procedures. To set up the SPEREXSYS, the

following steps should be taken in the order in which they

are listed here. These steps describe how the SPEREXSYS was

set up for this thesis research. It can be done other ways

using other equipment. All of the equipment used was

accessed through the terminals in terminal rooms (room

125), of building 640, WPAFB, Ohio.

1. Turn on the Anderson-Jacobsen 300 baud teletype

terminal.

2. The "on line" key should be pushed to the down

position.

3. The modem should be set for full duplex.

4. The telephone multiplexer box should have the "b"

- button pushed in. This connects the telephone to the modem.

hC-I

5. Dial 4363 or 4362 (access number for the DEC-10)

and wait for the computer ready tone. Place the phone in

the modem cradle.

6. Hit the' <cr> on the terminal until the log in

message begins printing.

7. Type: "log 6664,325<cr>". (This is the Milne DEC-10

account number).

8. Type in Milne's password.

9. Type: "set tty no echo<cr>".

10. Type: "run routh<cr>".

11. Wait until the terminal has printed "yes" and

12. Unscrew the two screws holding in the RS-232 cable

4, connector on the back of the modem (for the cable which

conncects the modem to the terminal).

13. In its place, plug in one end of the specially

constructed RS-232 cable. A wiring diagram of this cable is

as follows:

~15 ft

pin 2 .. pin 2

pin 3 -pin 3

pin 7 pin 7

RS-232 connectors

• "14. Select a free terminal with a Gandalf modem

C-2

.24

without a phone connected.

15. Turn off the Gandalf modem.

16. Dial 61 on the modem.

17. Turn on the terminal.

".' 18. Press the "set up" key and the re.set key.

19. At the sound of the beep, turn on the Gandalf

modem.

20. After the request-to-login message has printed on

the C.R.T., enter: "rrouth". After the request for password

has printed, enter the password.

21. After the system prompt (a percent sign) appears,

type: "tty<cr>".

22. Note the response. It will be of the form:

"%/dev/ttyxz" (where the xz are variable). This response- -
will be used in step 34.

23. Leave this terminal on and alone. You may wish to

post a "do not touch" sign on it.

24. Select another terminal with a Gandalf modem and

without a telephone, which is within ten feet of the

Anderson-Jacobsen teletype modem.

25. Turn off its Gandalf modem.

26. Dial 60 on the modem.

27. Turi' on the terminal.

28. Press the "set up" key and set the transmit and

receive speeds to 300 baud. Press the "set up" key again

when this has been done.

29. Turn on the modem.

C-3

. .

30. Repeat steps 20 - 22 above for this terminal.

(Note the response to step 22, it will be used in steps 42

and 47).

31. When the next "%" appears, type: "stty dec<cr>".

32. When the next "%" appears, type: "stty

echo<cr>".

33. When the next "%" appears, type: "lisp<cr>".

34. When the "->" appears, type: "(setq piport (infile

'/dev/ttyxz)) <cr>", where the values of xz were obtained

from step 22 above.

35. Repeat steps 12 and 13 above (using the other end

of the specially built RS-232 cable) for this terminal.

36. Select another terminal with a Gandalf modem and

without a telephone.

37. Repeat steps 15 - 20 above for this terminal.

38. After the "%", type: "emacs spxs<cr>".

39. Type: "'s tty<cr> 2 s<cr>".

40. Note the tty I.D. (two characters -- the cursor

will be bouncing at the first character of the I.D.). Call

this I.D. qr for reference in step 42.

41. Type: "<esc> < <esc> q".

42. Type: "ttyxz<cr> ttyqr<cr>", where thevalues of xz

were obtained in step 30 above and the values of qr were

obtained in step 40 above.

43. Type two spaces.

44. Type "x 'f" and wait for EMACS to exit and the "%"

to appear.

C-4

45. Type "lisp<cr>".

46. When the "->" appears, type "(load 'spxs)<cr>".

47. When the next ">" appears, type: "/dev/ttyxz<cr>"

where the values of xz were obtained in step 30 above.

48. The SPEREXSYS has now been completely set up.

Initialization

The answer to the first question is the value of

searchdepth. Enter the value and hit <cr>. The answer to

the second question is the value of acceptthresh. Enter the

value and hit <cr>. The SPEREXSYS is now initialized.

If the reader does not know how to choose values for

searchdepth and acceptthresh, he should reread chapters III

and IV of this thesis.

Operation

During the operation of tife SPEREXSYS, the user will

face two types of questions. The first type of question is

regarding the input to the SPEREXSYS from the Voice

Decoder. For help here, the user should consult section B

of chapter IV and appendix B.

The second type of question which the user will face

is the question which follows every complete exchange of

stringlist and epreslist between the EPFE and the English

":"" Parser. This question serves two purposes. The primary

C-5

- ..

purpose is to prevent faulty input from the Parser to the

EPFE (due to line hits or whatever) from causing

catastrophic termination of a run. The secondary purpose is

to provide the knowledgeable user with the option to

reprogram any part of the SPEREXSYS dynamically during

operation without stopping the run. This was established

primarily as a debugging and evaluation tool but can be

used for virtually anything.

This second type of question takes the form:

Would you like to try the EP interface again?

(r-rerun; i-new instrs; g-keep going).

Normally the user will respond with: "g<cr>". This will be

used when there is no reason to rerun the EPFE-English

Parser data exchange.

If the user has reason to suspect the reliability of

the data exchange, he may rerun the complete exchange (for

all strings) by typing: "r<cr>".

If the user wishes to reset the value of variables,

redefine function definitions, or anything else the Franz

LISP language will allow, he should type: "i<cr>". The

program options and usage are self explanatory if the "i"

option is selected.

C-6

--°..r r -. . .

.1"

p "APPENDIX D

A DISCUSSION ON HOW A SPEECH RECOGNITION SYSTEM

WHICH MODELS THE HSRS SHOULD BE DEVELOPED

V.4

D. A Discussion on How a Speech Recognition System

Which Models the HSRS Should Be Developed

It is quite evident that the speech recognition

problem is a very difficult problem to solve. Millions of

dollars have been spent over the last couple of decades in

the efforts of some of science'sibest educated minds using

the most advanced research facilities that have ever

existed to solve the speech recognition problem. The

solutions which have been thus far developed fall so far

short of a general solution to the problem that it is quite

clear that man has only barely begun in this very difficult

trek.

Those conclusions which have been reached so far as a

result of the speech recognition research are listed as

follows:

1. An extremely accurate (compared to the best that

technology has developed so far) acoustic analyzer is

required at the front end.

2. The acoustic analyzer must categorize and

distinguish sounds the same way that the HSRS does, else it

will not be forgiving of the feature measurements which are

not very important and it will not be critical enough of

the feature measurements which are very important. The

result will be an acoustic analyzer which makes different

decisions and comes to different conclusions than does the

S.HSRS

D-1

. . .-. . - ,. -.- ,". ., -,."., - . . , - ",..

3. A syntactic analyzer must be used which functions

around the kernel principle of one word lookahead.

4. Several layers of semantic analysis must be

employed because perfect acoustics and perfect syntactics

are insufficient to accomplish the task of speech

recognition. Some of the levels of semantic analysis have

not even yet been clearly identified nor have theories .been

proposed and developed as to how these levels operate and

interface with the rest of the system.

5. All the processing must be done in some manner

which allows for parallel or deterministic analysis. There

is too much analysis to be done to accomplish the necessary

results any other way.

An existence proof that a general English speech

recognition system can be, and has been, developed is

evident in that humans can communicate in spoken English

with each other. Since it is necessary for the speech

recognition system to function identically to the HSRS (in

order to interpret speech the way the HSRS interprets

speech -- a presupposition of the transmission mechanism),

then it is obvious that the HSRS is the optimal solution.

(Note - perhaps there are more efficient ways of

communicating with sound, but none will be more optimal for

the task of interpreting human speech than the HSRS).

Ultimately, then, the general solution to the speech

recognition problem is to mimic the HSRS. Research which is

D-2

,' *4' ' "• "o " -I ° ",° " G"o ,,-. ""' °,-,.. ° ' . "." """i °" " o°.", - '. . " '.'." ° •" " -

directed in any other way is doomed to produce less than

optimal results. These other research directions may
I

produce solutions which are adequate for some restricted

application, but they will not produce a general solution.

To proceed toward the development of this optimal

solution by exploring, in detail, the most intricate

internal workings of the human brain, and then attempting

to reconstruct the entire system from the bottom up, will

likely require a very long time to arrive at a solution (if

a solution can even be arrived at in this manner). One does

not need to know how the electron shells of iron, carbon,

hydrogen, and oxygen function in order to design and build

an automobile. Indeed, even the most thorough understanding

of the electron shells of these atoms will be insufficient

knowledge for designing and building an automobile even

though one can be constructed based entirely on the

functions of the electron shells of these atoms. One needs

only to have a rudimentary understanding of the principles

of mechanics, thermodynamics, and fluid dynamics along with

the wisdom and willingness to experiment with ways to

employ these principles together, and one can , in a few

years of tinkering, build a car. Henry Ford is an existence

proof of this assertion.

The optimal solution to the speech recognition problem

must be approached in this manner. Mankind is not going to

ever understand how the human brain works by studying

neurons. Instead, he must seek to discover the elementary

D-3

• , , . - - .. , ,, *" - .,- ..- - *... .. '. .. .-.-. ,

•7 -1,

principles of operation (which are implemented by the

_ -neurons) of the human brain. Not all of them have to be

*. , understood. Just a rudimentary understanding of a few key

principles along with the wisdom and willingness to

experiment with ways to employ these principles together,

and one can, perhaps in a few years of tinkering, build a

machine which is functionally similar to the HSRS.

Some of these principles have already been discovered.

The one which the remainder of this discussion will center

on is the principle which has been suggested by Kabrisky

(Ref 11) and explored and verified by several follow-up

researchers in the last eighteen years (see the works and

bibliographies of Ginsberg). The principle can be stated in

a very rudimentary form as follows:

The human brain interprets and categorizes

its sensory input based on a low frequency

Fourier transform of the sensory input

projected on a two dimensional surface.

Actually, Kabrisky et al have demonstrated this

primarily with respect to certain aspects of visual image

interpretation. Several observations lead one to suspect

that this is true also in the auditory processing portions

of the human brain. These are:

1. The physiology of both portions (visual and

auditory) of the brain are the same.

2. The physiology of the brain appears to support the

D-4

ability to do low frequency Fourier transforms.

3. The auditory processes of the human brain do use

Fourier transforms in that it is known that:

a. The auditory nerve carries the first Fourier

transform of the sound input to the ear
drum.

b. The tonotopic mapping of the auditory cortex

in the human brain reveals that the first

Fourier of the input sound is mapped onto

this two dimensional surface.

A quick review of the brain physiology (Ref 11)

reminds us that the image on the retina of the eye is

mapped homeomorphically onto the surface of the visual

cortex of the brain. If a low frequency Fourier transform

of this mapping is compared to the elements in the stored

vocabulary, the closest distance match (based on these

Fourier features) will produce the correct interpretation

of the image. "Correct" in the above sentence means the

interpretation which a human would have chosen. This

mechanism has been demonstrated to work successfully with

not only simple, geometric shapes such as letters and

numerals, but also with abstract shapes such as photographs

of animal cookies. It also is completely sufficient in

itself to explain an entire class of optical illusions.

N In applying this identically same mechanism to the

D-5

audio processing portions of the brain, the following

mechanism is suggested:

The brain takes low frequency Fourier

transform pictures of the sounds mapped on

the auditory cortex in order to interpret

and categorize these sounds. In speech,

these sound mappings are known as phonemes.

It can be psychologically demonstated that

phonemes are the elementary acoustic

alphabet (symbol set) of speech. If these

phonemes are strung together, they will

accurately "spell" the words being spoken.

If these phoneme strings (which are

constructed by time shifting the Fourier

transforms of the individual phonemes --

the cepstrums of the sounds) are then

compared with words in a stored word

dictionary, the closest match should be the

same word which the HSRS would have chosen.

" In this way, it is possible to build a voice decoder,

" which satisfies the required function of the voice decoder

needed for the front end of the SPEREXSYS, which is as

accurate as the acoustic analyzer in the HSRS.

At this point, one wonders how syntactic and semantic

:. ' *. analysis is carried out by performing low frequency Fourier

D-6

transforms of strings of words. This is an unsolved

problem.

If the principle of low frequency Fourier image

interpretation continues to be the key principle in

operation for these levels of analysis, as it has been

hypothesized to be in the levels of analysis up to and

including word identification, then the mechanism

(algorithm) which the SPEREXSYS employs to impose syntactic

constraints on the output of the voicp decoder is

incorrect. This is an area to be explored by future

research.

D-'-.

5--
%J.

APPENDIX E

THE SHORT TExM MEMORY PHENOMENON IN THE

* HUMAN SPEECH RECOGNITION SYSTEM

E. The Short Term Memory Phenomenon in the

Human Speech Recognition System

According to this researcher's observation of English

conversations, there appears to be a facility in the Human

Speech Recognition System (HSRS) for choosing the intended

word instead of the spoken word in a sentence. An example

of this is the fact that almost invariably, a casual human

listener will substitute the word "pigs" for the word

1"picks" in the following spoken sentence: "Farmer Brown had

15 cows, 42 sheep, 7goats, 11 horses, 12 picks, and 29

chickens."

Of course, in this example, the substitution can be

Acredited entirely to semantic analysis. There are, however,

other examples when semantics seems insufficient to explain

substitutions of this type.

A substitution, by the listener, of the word "pigs"

for "picks" is also likely in the following spoken

paragraph:

1 In the old mining town up in them thar hills

about 25 miles due north of Cripple Creek, was

an all purpose genral store. Mostly, that thar

store sold mostly mining tools and livestock.

The miners come down, each man, about ever'

six months to buy new tools and livestock.

He'd use the tools fer his work in the mines,

E-1

N , ' 'ej ..' ; e .. "-"-"."-"." ".

HD-RI36 835 R SPOKEN ENGLISH RECOGNITION EXPERT SYSTEM(U) AIR FORCE 3/3
INST OF TECH WRIGHT-PATTERSON RFB OH SCHOOL OF
ENGINEERING R L ROUTH SEP 83 RFIT/GCS/EE/83S-01

UNCLASSIFIED F/G 9/2 NL

mEMEEEEEEIEEEEEIhEEEIhEE
'EKE....-l

LJ°0

p..

- 12

£ ,..-o

1 1..

11111 1.0U
IIIJIL2 i.4 111L
IIIIII "

IIIII ll.25 II II III111 1.6i:

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS 1963 A

9,,

.4.

. -- *. *~.*.* . -%-. . -. 4: -..-.

• . - -;--. o - * o -
o

.. -.-..- .. - . -. . ., , . -

_-

and he'd keep the livestock penned up nearby

fer eatin'. Course, thar weren't no money.

Ever'body paid in gold dust or gold nuggets.

S, If a miner'd done real good the last six4,

months or so, he'd maybe buy a shovel, if he

broke his, and a cow and maybe a couple pigs.

Some miners jest buyed shovels and stuff. Some

'ud jest buy pigs to eat cause they didn't

break no tools. One year, I jest bought two

picks.

Semantically, either word "picks" or "pigs" would fit

as the last word in the above paragraph. The word "picks"

5. was actually uttered, but the word "pigs" will likely be

substituted by the HSRS. The listener may, instead of

N making the decision to substitute the word, simply ask for

clarification with a question such as: "Did you say 'two

picks' or 'two pigs'?" The fact that the last word's

identity is not clear to the listener even though it was

distinctly uttered as "picks" is an indication that the

HSRS prefers words which have recently been uttered over

new (as yet unuttered) words.

There is ample evidence to suggest that in human

- visual image interpretation, a short term memory is

.- actively involved in the brain's image interpretation. It

serves, among other functions, to focus future image

interpretation on recently (past) interpreted images. It

E-2

.5°%

..,....,<~ * .%5 . •~- . - .* . . . - . - .

'o

also fades very quickly in a manner which appears to be

related to the logarithm of time since the image was

projected on the visual cortex.

It seems reasonable to assume that some similar type

of short term memory is active in the HSRS. That would be

sufficient to explain the substitution of the word "pigs"

for "picks" in the last example.

-'-" This is a phenomenon which deserves far more research

and experimentation than has been done for this thesis.

This researcher is not willing to state conclusively that

such a phenomenon exists or that if it does exist, it does

influence speech recognition in the manner described.

This researcher is saying, however, that there appears

to be evidence which suggests that a short term memory is

operational in the HSRS. For this reason, a crude short

term memory has been modeled into the SPEREXSYS. The

results of test number two in chapter IV suggest that this

addition was useful in improving the performance of the

SPEREXSYS.

.E-

E-3

..

.4

S.%

APPENDIX F

THE PHENOMENON OF FAVORING LONGER WORDS IN THE

HUMAN SPEECH RECOGNITION SYSTEM

*'' '. "-.- ', " " "4 - "-"- ' "- " ". "• - ". "- - "."d ° °. " "°""" ""° "" •" " " "

F. The Phenomenon of Favoring Longer Words in the

Human Speech Recognition System

It was hypothesized by this researcher, as a result of

observing normal human speech communication, that when the

HSRS is given a choice between interpreting an input

utterance as two short words or one long word, it will

almost always choose the long word. It was further

hypothesized that the decision to choose the longer single

-'.4 word over the two shorter words would always be made unless

the syntactic or semantic analysis levels influenced the

decision to the contrary. For example, if syntax and

semantics are not involved, and the three words "come and

ding" are spoken in connected speech (so that "and" and

"ding" share the "d" phoneme), the HSRS will prefer to

interpret the utterance as the single word "commanding"

rather than "command ding" or "come and ding." Each of the

three options could plausibly fit both syntactically and

semantically in an English sentence.

To test this hypothesis, a series of informal

experiments were performed. The students of a graduate

level course on pattern recognition participated as the

subjects of the experiments. The experiments were

administered on two different class days. The subjects were

not an ideal group to participate in the experiments,

because they all tended to be of more than average

intelligence and had all spent over three months, at the

F-I

...............................

time of these experiments, studying the peculiarities of

pattern recognition in vision and speech. This is to say

that they were far from an unbiased and naive group.

Nevertheless, they had graciously volunteered to

participate in the experiment and this researcher was

grateful for their cooperation as no other subject group

was available.

On the first day of the experiments, a female

volunteer (not a class member), who was not informed of the

purpose of the experiment, appeared before the class to

speak the following four words in a manner in which they

would be spoken in rapid connected speech: "mass tree toga

oats."

Before her utterance of these four words, the class

was instructed that they would hear the utterance only once

and that immediately following the utterance they were to

write down their best representation of the utterance using

English words. If they could not find suitable English

words, they were instructed to write the word "noise."

(Note - The class was not informed as to the purpose or

expected results of the experiment).

No context was originally given. Eighteen students

participated in the experiment. Their responses to the

first utterance of "mass tree toga oats" are as follows:

1 te
1. mastery toe goats

* .F2. mastery toe goats

i F-2

q 'I £ '2 " " " " " "- '' '- ' L ' ' ,: ' '' J ' ' ' ' '' ' ' ' ' ' ' ' '' ' ' ' ' ' ' -

i ' : .' -. - - . j o S. S- . .- ...- .-.. -. . _ .° , . .-- ° • -

st 3. master eat old goats

4. mastery tow goats

5. mastery toga

6. master eat toe goats

7. mastery to goats

8. master eat toe goats

9. mastery toe goes

10. mastering toe goes

11. mastery toe goats

12. mastery go goes

13. mastery to go oats

14. noise

15. noise

16. mastery took its

17. mastery to ghost

18. master noise

There are several observations which can be made about

the above responses. One of them is that 13 of the 16

participants who responded with something other than

"noise" chose to make a single longer word out of "mass

tree" than represent the utterance as two words. The other

three respondents chose to place the word boundary beyond

the intended word boundary so as to make a longer first

word than "mass."

These four words were uttered seven more times. Each

' time the participants were given conversational contextual

F-3

I . -

7. 7

information in an attempt to introduce semantic influence

on the results. Because that portion of the experiment does

not have much to do with the phenomenon of choosing single

longer words over multiple shorter words, the results will

not be presented here. It is significant to say that with

proper contextual preparation, all 18 participants were

interpreting the first two words as "mass tree" by the

sixth utterance. This is to say that semantic analysis can

override the tendency to prefer longer word interpretations

over shorter word interpretations.

At the end of the experiment on the first day, the

purpose of the experiment was explained to the class. They

were now a definitely biased group.

On the second day, a second experiment was performed.

A set of words was spoken. The participants were asked to

write down one, two, three, or four English words which

best represented what they heard. Some of the results

obtained reflected an obvious attempt on the part of the

participant to separate utterances -into as many words as

possible. Again, this was due to the fact that the

participants understood the purpose of the experiment and

were, therefore, consciously looking for shorter words

which composed, or were close to, the longer words. In

spite of this prejudice, the results still indicated that

the participants favored longer words. Some examples are

presented below.

F-4

*i . ' , ., ' ,.. ".",",", ",,:.•. - " -. " . , , -"-. . , .-. -.. ., .

When the utterance was : "come and ding," the

responses were:

'1. commanding

2. commanding

3. commanding

4. commanding

5. commanding

6. commanding

7. commanding

8. commanding

9. commanding

10. commanding

10. commanding

12. commanding

13. commanding

14. commanding

15. commanding

16. commanding

17. commanding

18. commanding

When the utterance was: "gun shoot her" (with

particular care being given to the pronunciation of the "h"

in "her"), the responses were:

1. gun shooter

F-5

2. gun shooter

3. gun shooter

4. gun shooter

5. gunshooter

6. gunshooter

7. gunshooter

8. gun shooter

9. gun shooter

10. gun shooter

11. gun shooter

12. gun shooter

13. gun shooter

14. gun shooter

-) 15. gun shooter

16. gun shooter
17. gunshooter

18. gun shooter

It is interesting to note that there was such a

pronounced tendancy to combine "shoot" and "her" into the

single word "shooter" that in all 18 instances, the HSRS's

preferred to ignore the "h" sound in "her" in order to

combine the two words into one.

When the utterance was: "sum or seas," the responses

were:

F-6

* - ;. *~. 6.- -7 .. N. - -

1. some mercies

2. sub mercies

3. some mercies

4. some mercies

5. some mercies

6. sum ercies
7. some mercies

8. some mercies

9. some mercies

10. some mercies

11. sum mercies

12. some mercies

13. some mercies

14. some mercies

15. some mercies

16. some mercies

17. some mercys

18. so mercies

Two things are surprising here. The first is that this

researcher expected to see the response "summer seas" as

the more frequent response. It was not a response at all.

The second noteworthy observation is that the "o" in "or"

does not sound much like the "e" in "mercies."

Nevertheless, the tendency to combine two words into one

was overwhelming.

Needless to say, some responses were not quite as

F-7

'-V. ----. |

convincing of this theory. One of these is as follows. When

the utterance was: "pair or shoot," the responses were:

1. pair or shoot

2. parachute

3. parachute

4. pair a shoot

5. parachute

6. parachute

7. pair oh shoot

8. par oh chute

9. parachute

10. parachute

11. pare or shoot

12. pair oh shoot

13. parachute
14. parachute

15. parachute

16. parachute

17. parachute

18. parachute

This is not as was expected in that the response

"parachute" was expected more often. Some of the

interpretations seemed strained to avoid writing one long

word (particularly response number eight).

Overall, the evidence seems to support the hypothesis

F-8

1 ... , * **4"

that longer words are preferred over multiple shorter words

"i "!"by the Human Speech Recognition System.

4

4 .

4F-

"a-

I. *

• . ' -' . , ' -" , , ' - -" ,' . • " ." , - ' " - . , - - -'. ' .• ". -" - .• - I
K -. . ' " 5 ' " " ' - , ' " - ' , ' ' ' " , . , . . .

Data Dictionary

This data dictionary includes data descriptions and a

brief glossary of the explanation of the acronyms used for

module names. For the most part, only the global data

elements are included, although a few key local data

elements are also defined.

The purpose of this dictionary is to assist the reader

in understanding both the narrative in chapter III and the

LISP program listing in appendix A.

This dictionary is ordered alphabetically by the

variable names of the data elements. The module name

glossary is at the end of the appendix.

acceptthresh:

Stands for: acceptance threshold

Aliases: m (in EPFE and GLOBAL as a local variable)

Composition: one real number value between zero and one.

Notes:

1. The value of acceptthresh is the minimum

allowable average probability of the last

three words in a string.

declist:

G-1

:; " ' " ""...- ..- ; ; ' '-;, . . " ":;.."-.-.-..-.-..-. .- -. :;;. . ;.- -;, - .- . :;- 2, -:

Stands for: decision list

Aliases: none

Composition: list of dictionary entries,

e.g. - (peak peek peaking)

Notes:

1. This is the list of all third words back from

the end of all active strings.

2. This list of words marks the words which the

semantic analyzer must comment on (when one

has been developed).

4
°

dict.name:
4q%'

Stands for: dictionary entry name

Aliases: dictname, word.dict, worddict

Composition: one of the allowable 200 dictionary entries.

e.g. - the

Notes:

1. Dict.name is a single English word.

2. This is different from the SPEREXSYS definition

of a "word".

G-2

4.

epoutport:

Stands for: English Parser output port

Aliases: none

Composition: in form: /dev/ttyxz

where xz specify a particular VAX output port

e.g. - /dev/ttyi2

Notes:

1. Used by the SPEREXSYS to redirect output to the

DEC-10 on which the English Parser runs.

epres:

Stands for: English Parser response

Aliases: none

Composition: (stringum (feature set) (feature set)...)

e.g. - (1001 (noun) (verb & not adj))

epreslst:

Stands for: English Parser Response List

Aliases: none

Composition: (epres epres epres ...)

e.g. - ((1001 (noun)(verb)) (1002 (adj)(fpunc)))

G-3

featureset:

Stands for: set of legal features. A feature is a grammatical

type.

Aliases: none

Composition: (feature feature feature ...)

e.g. - (all fpunct fpunc noun nlp ...

Notes:

1. See DICT.SPXS program listing in appendix A for

complete definition.

2. Each feature is also defined as a set of

dict.names which have that feature as a

syntactic function.

tnit:

Stands for: initial cycle through EPFE

Aliases: none

Composition: variable with the value nil or anything else.

Notes:

1. When not nil, it signifies the EPFE is in its

initial cycle for a new conversation.

G-4

.4--..-

.

inittim:
Stands for: initial time

Aliases: inittime and tim (both in EPFE).

Composition: a single integer value.

Notes:

1. This is the time at which the next sentence is

expected to start.

2. It is the time the last sentence ended

(including FPUNCT -- if there was one).
1

maxstnum:

Stands for: maximum string number used

Aliases: none

Composition: a single integer value.

Notes:

1. The current value of maxstnum is the most

recently (and highest value) assigned string

number.

2. Maxstnum+1 will be the value of the next

assigned string number.

G-5

................................ . . .

-- ~-. - ~ .* >.' . ~ *. ~ -. I .. . ~. 4~ . ~ * * i4~ . .* 4. 4 .*. **~*~ ** -~ 4.~ -

maxwordtim:

Stands for: maximum word time of utterance

Aliases: none

Composition: single integer value

(currently assigned as 200).

Notes:

1. Time (in Seelandt time units) it takes to

pronounce the longest possible word in the

vocabulary.

0

minaccept:

Stands for: minimum acceptance threshold

Aliases: none

Composition: single real number with a value between

zero and three.

Notes:

1. Defined as three times acceptthresh.

* ":.'; notfeatset:

G-6

Stands for: not in feature set

Aliases: none

Composition: (feature feature feature)

e.g. - (qp np ap pp vp ...)

Notes:

1. See DICT.SPXS program listing in appendix A for

complete defintion.

2. Set of features in English Parser which the

SPEREXSYS does not recognize.

nextRuess:

Stands for: next guess request

Aliases: nxgs, nxguess, nextgs

Composition: (stringnum tim1 (feature set)(feature set)...)

e.g. - (1001 15 (noun)(verb & not npl))

Notes:

1. This is the basic request for information (next

word guesses) which the EPFE sends to the

Voice Decoder.

2. One for each active string is sent.

3. They are all sent together as a list of

S"'nextguesses. See next dictionary entry.

G-7

F ; :: < >~~~ ~~~~~ ~~~~~~ ~ ~~... -. .o :. - . ?.-: > ? S - - -- L . ' .'> L .- , .- .- - . - - /

4. Timl is the approximate start time for the next

word to be guessed for that string.

nxgslst:

Stands for: next guess list

Aliases: next-guess-list

Composition: (nextguess nextguess nextguess ...)

e.g. - ((1001 15 (noun)(adj))(1002 20 (verb)(ns)))

Notes:

1. This is a list of nextguess requests.

A2. See nextguess dictionary entry above.

numstring:

Stands for: number of active strings allowed

Aliases: none

Composition: a single integer value

(normally searchdepth squared)

Notes:

1. This value determines the number of words

lookahead that will be used.

2. Currently it is set to searchdepth squared

G-8

a. % , .:"" , .''""' , . , :" . . . """""" "" , " . " - '''' : .".' 2, .. ,"

77 -. 17- 7- 7 77 .--.. - -

which allows for a two word lookahead.

3. It is set in GLOBAL.

optseslst:

Stands for: optional sentence string list

Aliases: none but is used like sentstlst.

See: dictionary entry for sentstlst.

optstg:

Stands for: optional string of English Parser Responses

Aliases: none but is used like epreslst.

See: dictionary entry for epreslst.

optat st:

Stands for: optional string list

Aliases: none

Use: functions as temporary dummy variable for a

variety of other lists.

Prob:

Stands for: probability of likelihood of word

Aliases: none

G-

G-9
."..1,¢ % ,:. : '. ', ,. -..:', , , , , . ..,, ,.,..,:. .--, . . '-,.,.. :.,

:. -.

-. Composition: a single valued real variable.

Notes:

1. This is carried as the last data element of

every word and represents that word's

probability of likelihood of being the correct

word.

2. See dictionary entry for "word".

searchdepth:

Aliases: topchoicenum (in EPFE)

Composition: a single integer valued variable.

Notes:

1. This represents the number of words deep the

SPEREXSYS may have to search in the list of

next word guesses (for each string) in order

to find the correct word. It is therefore an

indicator of the reliability of the Voice

Decoder.

2. If searchdepth needs to be any higher than

three, the SPEREXSYS will not be expected to

perform very well.

G-10
*% * -o.. . ;~ ~ . , ! 4 ~ '

aentatist:

Stands for: sentence string list

Aliases: none

Compositions (sentence sentence sentence o..)

e.g. - ((1011 (he (0 15) .98)(went (15 30) .87))

(1012 (she (0 15) .92)(lent (15 30) .81)))

Notes:

1. A sentence has the same form as a string, only

it is a complete sentence.

2. This is the global variable that the EPFE

builds for the Semantic Analyzer. It contains

all the sentences the EPFE has built that are

the possible identities of the correct

sentence.

shortermem:

Stands for: short term memory words

Aliases: none

Composition: (name.dict name.dict name.dict ...)

e.g. - (the boy hit the girl a big...)

Notes:

1. This is the short term memory's list of

remembered vocabulary words.

G-11

N

4

stringlist:

Aliases: stglst

Composition: ((stringnum word word word) ...)
14
.e.g. ((1001 (the (0 15) 95)(big (15 35) 90))

(1002 (the (0 15) .95)(pig (15 35) .89)))

Notes:

1. This is the list of active strings

9strinanum:

Stands for: string number

Aliases: stgnum

Composition: a single integer valued variable

Notes:

1. Stringnum is the identification tag that marks

each different string.

2. No two strings have the same string number.

* Stands for: time of start of word

G-12

Aliases: none

Composition: single real (normally integer) value

Notes:

.* 1. Marks the time a word begins in the input

utterance 'if timl is sent from the Voice

Decoder.

2. Marks the approximate start time of the next

word to be guessed if timl is sent from the

EPFE.

Ctim2:
Stands for: time of end of word

Aliases: none

Composition: single real (normally integer) value

Notes:

1. Marks the time a word ends in the input

utterance.

topwordlst:

Stands for: top words list

Aliases: none

G-13

Composition: ((stringnum word word) (stringnum word word

word) ...)

* e.g. -((1001 (the (0 15) .95)(a (0 15) .90))

(1002 (big (0 15) .92)(door (0 15) .86)))

Notes:

1. List of the top (most probable) searchdepth

number of words for each string.

word:

Aliases: none

Composition: (name.dict (timi tim2) prob)

e.g. - (the (0 15) .95)

Notes:

1. Different from name.dict.

wordgslst:

Stands for: word guess list

Aliases: none

Composition: (wordgs wordgs wordgs ...)

In form it is identical to topwordlst.

G-14

J--------

Notes:

1. This is the Voice Decoder's response (of

next-word-guesses) to the EPFE's

next-guess-request.

words:

Aliases: none

Composition: (word word word ...)

e.g. - ((the (0 15) .95)(big (15 30) .92))

Notes:

1. The same as a string with the string number

removed.

..

Glossary of Module Name Acronyms

ADDTOSESTLS -- Add to Sentence String List

AUGSENSTG -- Augment Sentence String

BUILDDECLST -- Build the Decision List

BUILDNXGS -- Build Next Guess Request

CALCNEWPROB -- Calculate New Probability

CALCSTGPROB -- Calculate the String Probability

CHANGEPROB -- Change the Probability

G-15

I

CHECKFPUN -- Check for Final Punctuation (FPUNCT)

CHECKMINPR -- Check Minimum Probability p

CHOPTOMNS -- Chop to Minimum Number of Strings

COMPLIMENT -- Compliment

DECTOPWDS -- Decide on Top Probability Words

ELIM -- Eliminate

ELIMINACC -- Eliminate (all strings below the) Minimum

Acceptable String Probability

EPFE -- English Parser Front End

ERRORRECOVRY -- Error Recovery

EVALS -- Evaluate the Instruction

EXAMNEXT2 -- Examine Next2

FINDFPUNCT -- Find Final Punctuation (FPUNCT)

0FINDTIMI -- Find Timl (word start time)

FINDTOPWDS -- Find Top Probability Words

FINDWDSMATCH -- Find Words Match

FORMNXGS -- Form Next Guess Request

FPUNCTPROC -- Final Punctuation (FPUNCT) Processor

GETNEXTI -- Get Nextl

GETPROBLST -- Get List of Probabilities

GETSTGPROBS -- Get String Probabilities

GETTIMI -- Get Timl (word start time)

GETTOPSTS -- Get Top Probability Strings 14

GETTOPWDS -- Get Top Probability Words

GETWORDOPTS -- Get (next) Word Options

GETWORDS -- Get Words

GLOBAL -- Global Initialization

G-16 h

. :,:,, ::.,:.- .:...:.:.::..'......:......,:. _ .. , - ,, ,,

" .? INCRFPUNCTS -- Increment FPUNCT Probabilities

INTERFEP -- Interface with English Parser

INTERFVOCDEC -- Interface with Voice Decoder

INTERSECT2 -- Intersect Two Sets (lists)

ITEPREST -- Iteratively Strip English Parser Responses

KILLOWSTS -- Kill Low Probability Strings

KILNILSTS -- Kill Nil Strings

LOOKATNEXT2 -- Look at Next2

MAKEDECISION -- Make Decision

MAKENXGSLST -- Make Next Guess Requests List

MAKESTS -- Make Strings

MODFPUNCTS -- Modify FPUNCTs

NEWSESLST -- New Sentence String List

NEWSTRINGS -- New Strings

ORDERLIST -- Order List

ORDERSENTLST -- Order Sentence String List

OUTRESTSENT -- Output the Rest of the Sentence

OVERMIN -- Over Minimum

PROCFEATTERM -- Process Feature Term

PROCWDGS -- Process Word Guess Response

PRINTSENT -- Print Sentence

PRINTWORDOPTS -- Print (next) Word Options

RANKSENTS -- Rank Order Sentences (by probabilities)

REINIT -- Re-initialize

SEMANALYZER -- Semantic Analyzer

SEMANINIT -- Semantic Analyzer Initialization

SHORTERMEMPROB -- Short Term Memory Probability

G- 17

* * .]

SHORTTERMMEM -- Short Term Memory

SPEREXSYS -- Spoken English Recognition Expert System

SPXSINIT -- SPEREXSYS Initialization

STARTNSTS -- Start New Strings

STGPRINT -- String Print

STGPROB -- String Probability

STRPTOPN -- Strip Top 'N" Number (off of list into new list)

TOPFPUNCT -- Top Final Punctuation (FPUNCT)

TOPSENT -- Top Probability Sentence

TRANSLATE -- Translate

UNION2 -- Form the Union of Two Sets (lists)

USERFDBK -- User Feedback

G-18
--

.1g.
~ ~*i

.J..? < ::°: ?- :.: .-. . - : .

VITA

Education

Richard LeRoy Routh graduated from the United States

Military Academy in 1978 with the degree of Bachelor of

Science with areas of concentration in Nuclear Engineering

and Computer Science. In 1978, he also graduated from the

U.S. Army Signal Officers Basic Course. In 1979, he

graduated from the Radio Systems Officers Course at Fort

Gordon, Georgia. In 1982, he graduated from the University

of Phoenix with the degree of Master of Arts in Management.

In 1983, he graduated from the U.S. Army Signal Officers

Advanced Course and the Air Force Institute of Technology

Computer Systems Training program.

Assignments

Since his graduation and commissioning from the United

States Military Academy, his assignments have included: ADP

Officer in the Telecommunications-Automation Directorate of

the U.S. Army Communications and Electronics Engineering

and Installation Agency (USACEEIA-TAD); Aide-de-Camp to the

Deputy Commanding General of the Army Communications

Command; Platoon Leader and Executive Officer of A Company,

40th Signal Battalion, Fort Huachuca, Arizona; and

Operations Officer for the 86th Signal Battalion, lth

V-I

%
..

Z.

Signal Brigade, Fort Huachuca, Arizona.

- Publications and Honors

In 1977, he submitted a paper titled, "A Pulsed,

Nitrogen Gas Laser," to the Eastern Colleges Science

Conference and was given the second place award in

engineering for this work. He published an article titled,

"Computing Optimum Repair Parts Inventory Cost," in the

Army Logistician magazine, January - February 1981. His

*Master of Arts in Management thesis was titled, "Basic

Principles and Guidelines for the Successful Management of

a Small Business," and was published with the University of

*Phoenix, Phoenix, Arizona.

.

-S-2

5-,-

" " . "- . .--°
-

.1' •. . .

SECURITY CLASSIFICATION OF THIS PAGE (When Das Entered)

READ INSTRUCTIONSREPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
. REPORT NUMBER 2. GOVT ACCESSION No. T 3FCIPIENT'S CATALOG NUMBER

4. TITLE (and Subtitle) TYPE OF REPORT & PERIOD COVERED

A Spoken rglish Recognition Expert System M Thesis
6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(s) S. CONTRACT OR GRANT NUMBER(s)

Richard Le!Poy Fouth
9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK

AREA S WORK UNIT NUMBERS

Air Force Institute of Techmolog/ (TFT/MT)
Wright-Patterson AFr, T!! 45433

I I. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

!eptenber 1983
13. NUMBER OF PAGES

14. MONITORING AGENCY NAME • ADDRESS(If different from Controlling Office) IS. SECURITY CLASS. (ot this report)

lnclassified
isa. DECLASSI FICATION/DOWNGRADING

SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for P)I-lic release; distri-ution unlimited.

S7. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, It dilferent from Report)

AFR 290.1, 0SEP
u.. nd Prolsolefail 0qeVuiejaa8

Air k'crce Jzstaile ot Tschnology (Alai

Il. SU P P L EM E N T A R Y N O T E S

This docurent has been copyrighted. • All cormercial rip hts have been
reserved.

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

- S;peech reconition
- Speech analysis
- Syntax

20. ABSTRACT (Continue on revers* side It necessary and Identify by block number)

Subject to the accurncy of the acoustic analyzer and the accurncy and
corleteness of the Fntylish Parser, i real-tire pencrnl solution to the
application of Fnlish syntactic constrairts to so.hen to "'ol'er ibglish
recopnition has been develoned. This solution is imctionallv eqiiivelent
in many ways tot he syntax processinp of speec ir the hiuman br.in.
:.,"' Casc it C'1o e"' "sO:1Co t,*' "nta" .rneCeSin O' 1 I)U-" Speech
Recognition System (HSRS), it is most effective when used with the

.D JA.I7 1473 EDITION O, NOV 5 IS OBSOLETE . L A .SI I i' ,
V. SECURITY CLASSIFICATION OF THIS PAGE (Rfhe. Date Entered)

:.,......:: ,...-.....,............ I

SECURITY CLASSIFICATION OF THIS PAGIE(When Dale laled)*

Item 20 continued- several levels of semantic analysis which are'also evidently
. operational in the HSRS as has been shown in this thesis.

Hence, this work may well be a necessary part of the
eventual general solution to the speech recognition problem.

SECURITY CLASSIFICATION OF THIS PAGE(..n Doe gnrtfere

Fr

. p.Iir

it I

AVA

*v

A r.*~~ VW~;<1

'6 &c. ,*' ~ : IAll
* ~ -J' '

~~i Ilk

* i - w14
c.1 4

